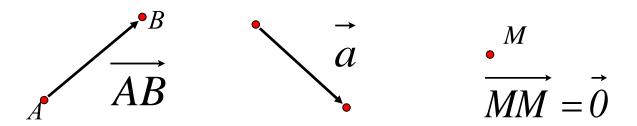
Векторы в пространстве

Выполнили: Девахина Д.П., Иванова П.М. Учитель: Шорникова С.П.

Понятие вектора в пространстве

Вектор(направленный отрезок) –

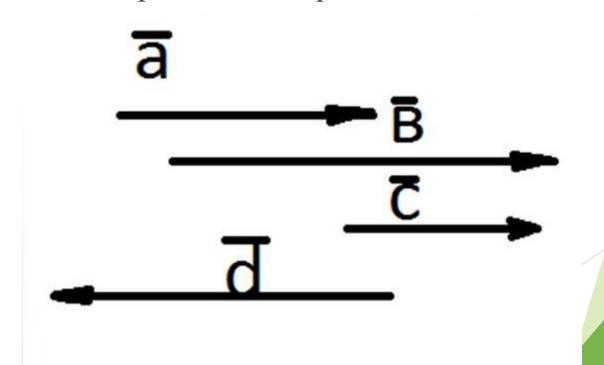
отрезок, для которого указано какой из его концов считается началом, а какой – концом.



$$egin{aligned} egin{aligned} egin{aligned} ar{AB} - \partial \pi u \mu a \ ompeska \ AB \end{aligned} = AB \ \begin{vmatrix} ar{O} \ \ \ \ \ \ \ \end{vmatrix} = O \end{aligned}$$

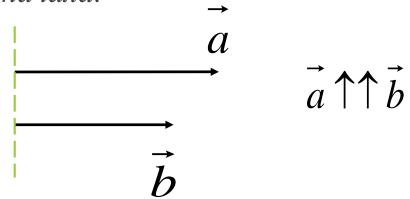
Коллинеарные векторы

Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или параллельных прямых.



Сонаправленные векторы

Сонаправленные векторы - векторы, лежащие по одну сторону от прямой, проходящей через их начала.



Нулевой вектор считается сонаправленным с любым вектором.

Равные векторы

Равные векторы - сонаправленные векторы, длины которых равны.

$$\overrightarrow{a}$$

$$\overrightarrow{a} = \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \uparrow \uparrow \overrightarrow{b}, |\overrightarrow{a}| = |\overrightarrow{b}|$$

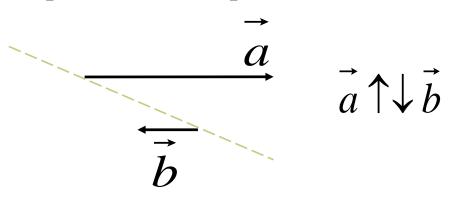
$$\overrightarrow{b}$$

От любой точки можно отложить вектор, равный данному, и притом только один.

Противоположно

Направленные векторы Противоположно направленные векторы –

векторы, лежащие по разные стороны от прямой, проходящей через их начала.



Противоположные векторы

Противоположные векторы – противоположно направленные векторы, длины которых равны.

$$\overrightarrow{a} = -\overrightarrow{b} \Leftrightarrow \overrightarrow{a} \uparrow \downarrow \overrightarrow{b}, |\overrightarrow{a}| = |\overrightarrow{b}|$$

$$\overrightarrow{b}$$

Вектором, противоположным нулевому, считается нулевой вектор.

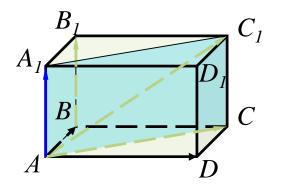
Признак коллинеарности

Если существует такое число k при котором выполняется равенство $\vec{a} = k\vec{b}$ и при том вектор $\vec{b} \neq \vec{0}$, то векторы \vec{a} и \vec{b} коллинеарны.

Определение компланарных векторов

Компланарные векторы — векторы, при откладывании которых от одной и той же точки пространства, они будут лежать в одной плоскости.

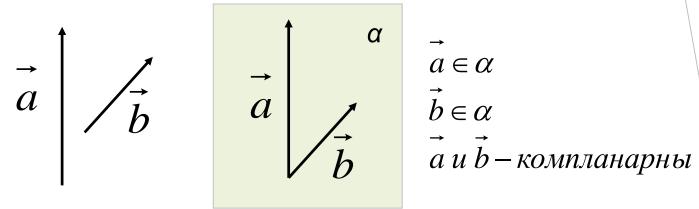
Пример:



 $\overrightarrow{BB}_{_{I}}$, \overrightarrow{AC} , $\overrightarrow{AC}_{_{I}}$ — компланарны, т.к. $\overrightarrow{BB}_{_{I}} = \overrightarrow{AA}_{_{I}}$, а векторы $\overrightarrow{AA}_{_{I}}$, \overrightarrow{AC} , $\overrightarrow{AC}_{_{I}}$ лежат в плоскости $(AA_{_{I}}C)$

О компланарных векторах

Любые два вектора всегда компланарны.



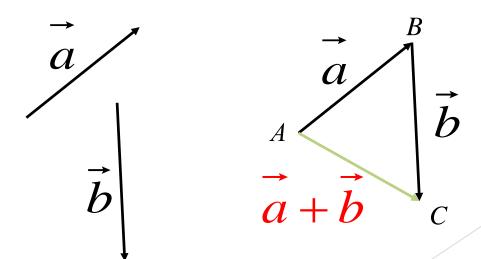
Три вектора, среди которых имеются два коллинеарных, компланарны.

$$\vec{a}, \vec{b}$$
 и \vec{c} — $\vec{a}, \vec{b}, \vec{c}$ $\vec{a}, \vec{b}, \vec{c}$ $\vec{a} = k\vec{b}$

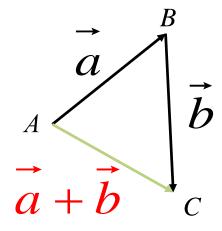
Правило треугольника

Для сложения двух векторов необходимо:

- $1. \quad \mbox{отложить от какой} нибудь точки <math>A$ вектор \overrightarrow{AB} , равный \overrightarrow{a}
- 2. от точки В отложить вектор ВС, равный в
- 3. вектор \overrightarrow{AC} называется суммой векторов \vec{a} и \vec{b}



Правило треугольника



Для любых трех точек А, В и С справедливо равенство:

$$\overrightarrow{AB+BC} = \overrightarrow{AC}$$

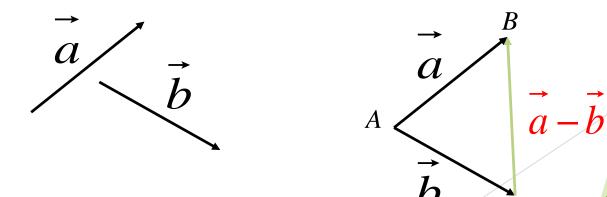
Свойства сложения векторов

Для любых векторов a, b и c справедливы равенства: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ переместительный закон $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ сочетательный закон

Вычитание векторов

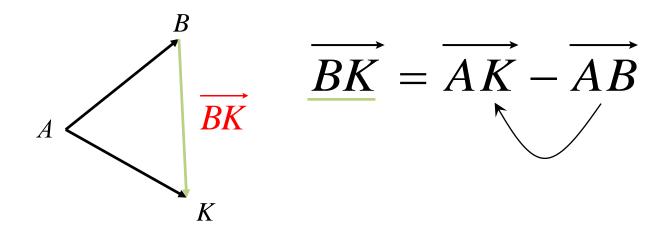
Для вычитания одного вектора из другого необходимо:

- 1. omложить om какой нибудь точки <math>A вектор \overrightarrow{AB} , равный \vec{a}
- 2. от этой же точки A отложить вектор AC, равный \vec{b}
- 3. вектор СВ называется разностью векторов а и в



Правило трех точек

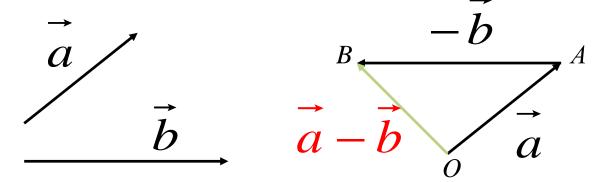
Любой вектор можно представить как разность двух векторов, проведенных из одной точки.



Сложение с противоположным вектором

Разность векторов a и b можно представить как сумму вектора a и вектора, противоположного вектору b.

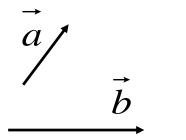
$$\vec{a} - \vec{b} = \vec{a} + \left(-\vec{b}\right)$$



Умножение вектора на

ЧИСЛО

Произведением ненулевого вектора а на число k называется такой вектор b, длина которого равна $|\kappa| \cdot |\vec{a}|$, при чем векторы \vec{a} и \vec{b} сонаправлены при $k \ge 0$ и противоположно направлены при k < 0.



$$2\vec{a}$$
 $-\frac{1}{3}\vec{b}$

Скалярное произведение векторов

Скалярным произведением двух векторов называется произведение их длин на косинус угла

между ними.

$$|\vec{a}\vec{b}| = |\vec{a}| \cdot |\vec{b}| \cos(\vec{a}; \vec{b})$$

Справедливые утверждения

скалярное произведение ненулевых векторов
 равно нулю тогда и только тогда, когда эти
 векторы перпендикулярны

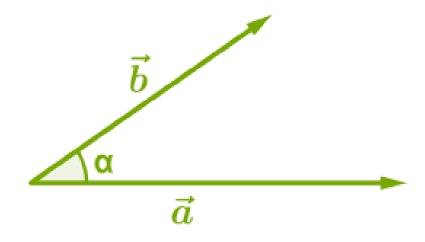
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{0} \quad \overrightarrow{a} \neq \overrightarrow{0} \quad \overrightarrow{b} \neq 0 \Leftrightarrow \overrightarrow{a} \perp \overrightarrow{b}$$

Вычисление скалярного произведения в координатах

Скалярное произведение векторов $\vec{a}\{x_1;y_1;z_1\}$ и $\vec{b}\{x_2;y_2;z_2\}$ выражается формулой $\vec{a}\vec{b}=x_1x_2+y_1y_2+z_1z_2$

Задачи.

► 1.|a |=6 ,/b |=2 ,∡α=30°.Определи скалярное произведение данных векторов.



 2. Определи скалярное произведение векторов а[¬]{−1;−4;−7} и b[¬]{1;2;−1}.