

DM350

Контроллер твердотопливного котла с реверсом шнека и GSM-модулем

Руководство пользователя

Содержание

1 Назначение	8
2 Лицевая панель и главный экран	9
3 Задняя панель	10
3.1 Замена предохранителя	
4 Описание меню контроллера	
5 Датчики	18
6 Выходные каналы	
7 Реверс шнека	
7.1 Подключение шнека к контроллеру	
8 GSM модуль и мобильное приложение	
8.1 Установка SIM-карты	
8.2 Мобильное приложение	
9 Настройка режима горения	
9.1 Классический режим	
9.2 Режим AirFlow©	
9.2.1 Датчик температуры дымовых газов	29
10 Погодозависимое регулирование	30
11 Диагностика ошибок	
12 Тарировка объема бункера	
13 Техническое обслуживание	
14 Транспортировка и хранение	

УКАЗАНИЯ ПО БЕЗОПАСНОМУ ПРИМЕНЕНИЮ

ВНИМАНИЕ! Перед началом эксплуатации, обслуживания и монтажа в обязательном порядке следует изучить данное руководство.

Все работы связанные с монтажом, обслуживанием и ремонтом контроллера следует проводить на полностью обесточенном контроллере. Вилка питания контроллера должна быть вынута из розетки.

Монтаж, обслуживание и ремонт должен производиться специалистами, имеющими необходимые навыки и квалификацию.

Запрещается эксплуатация контроллера без защитного заземления.

Запрещается эксплуатация контроллера имеющего повреждения корпуса, либо нарушения целостности изоляции проводов.

Запрещается эксплуатация контроллера без установки аварийного датчика перегрева (термик) на котел.

Для защиты от перегрузки в контроллере имеется предохранитель. Запрещается установка предохранителя с большим номинальным током срабатывания, чем предписано заводом изготовителем. Запрещается установка проволочных перемычек «жучков».

Атмосферные разряды могут повредить оборудование. Во время грозы рекомендуется отключать контроллер от сети.

Не допускается попадание на контроллер брызг, капель, струй воды.

В данном руководстве не описываются все нюансы работы иного отопительного и другого оборудования, которое может эксплуатироваться параллельно с контроллером, быть с ним несовместимо, а также негативно влиять на его работу. Для уточнения информации следует обращаться к руководству пользователя на соответствующее оборудование.

Производитель не несет ответственности за вред, причиненный жизни, здоровью или имуществу потребителя по причине нарушения правил эксплуатации, обслуживания и монтажа.

БЫСТРЫЙ ЗАПУСК КОТЛА СО ШНЕКОВОЙ ПОДАЧЕЙ

ВНИМАНИЕ! Приведенный алгоритм запуска является «шпаргалкой» и не может использоваться без предварительного ознакомления с настоящим руководством пользователя. Производя запуск по данному алгоритму пользователь подтверждает, что полностью ознакомлен с настоящим руководством.

- **1.** Убедиться, что в бункере достаточно топлива для розжига и работы котла. Закрыть крышку бункера.
 - 2. Включить питание контроллера.
 - 3. Зайти в ручной режим.
 - 4. Включить шнек подачи топлива.
- **5.** Открыть дверцу котла и визуально наблюдать за наполнением горелки топливом. Дождаться образования на горелке горки из топлива.
 - 6. Выключить шнек подачи топлива.
- 7. При помощи средства для розжига, либо газовой горелки разжечь топливо с трех сторон. Добиться устойчивого горения, либо обширного тления топлива.
 - 8. Запустить котел, выбрав и нажав в меню на пункт «запуск».
- 9. Убедиться в том, что топливо разгорелось и горелка работает правильно. Обычно на это требуется около 20 минут.

Что делать если котел пересыпает топливо, отверстия подачи воздуха на горелке полностью засыпаны топливом, не догоревшее топливо падает в зольник?

Уменьшить время работы шнека на 2 секунды (*меню*—*шнек пода-* uu—*режим нагрева*—*работа (секунд)*). При необходимости повторить операцию.

Что делать если котел недосыпает топливо, горение происходит в трубе шнека?

Увеличить время работы шнека на 2 секунды (*меню* \rightarrow *шнек подачи* \rightarrow *режим нагрева* \rightarrow *работа (секунд)*). При необходимости повторить операцию.

Что делать если котел не может набрать нужную температуру?

Увеличить время подачи топлива на 2 секунды (*меню*—*шнек подачи*—*режим нагрева*—*работа (секунд)*). Увеличить мощность вентилятора на 5 % (*меню*—*вентилятор*—*поддержка*—*перерыв (минут)*).

Что делать если котел продолжает разогреваться в режиме поддержки?

Увеличить в 2 раза время между продувками вентилятора в режиме поддержки (*меню*—*вентилятор*—*поддержка*—*перерыв (минут)*). При необходимости повторить операцию.

Что делать если топливо сгорает очень быстро?

Уменьшить мощность вентилятора на 10% (меню \rightarrow вентилятор \rightarrow максимальная мощность (%)).

Другие ответы на вопросы, касательно отопления и работы автоматики, можно найти на нашем официальном YouTube канале — ДомАвтоматика. Справа QR-код для быстрого перехода на канал.

1 Назначение

Контроллер DM350 предназначен для управления автоматическим твердотопливным котлом. Основной задачей контроллера является поддержание заданной температуры теплоносителя и управление режимами горения твердотопливного котла. Для защиты от заклинивания шнека и выхода из строя электродвигателя шнека, в контроллере имеется модуль реверса. Управление контроллером может осуществляться удаленно, при помощи мобильного приложения.

Характеристики контроллера приведены в таблице 1.

Таблица 1 - Характеристики контроллера

Параметр	Значение
Габаритные размеры (без учета проводов), мм	180×230×100
Масса контроллера, кг, не более	1,95
Степень защиты корпуса	IP40
Напряжение питания, В	230 ±5%
Потребляемая мощность, ВА, не более	5
Климатическое исполнение по ГОСТ 15150	УХЛ3.1
Температура эксплуатации, °С	-10 ÷ +40
Максимальная выходная мощность канала «Насос ЦО», Вт	250*
Максимальная выходная мощность канала «Насос ГВС», Вт	250
Максимальная выходная мощность канала «Вентилятор», Вт	250
Максимальная выходная мощность канала «Шнек», Вт	750
Диапазон измерения тока модулем реверса, А	0,1 ÷ 5

^{*} Суммарная долговременная мощность всех выходных каналов не может превышать 1100 Вт.

Для управления котлом контроллер имеет четыре выходных канала: насос ЦО; насос ГВС; вентилятор наддува; шнек подачи топлива. А также семь датчиков для контроля параметров системы: датчик температуры ЦО; датчик температуры ГВС; датчик температуры шнека подачи топлива; аварийный датчик перегрева котла (термик); датчик закрытия топливного бункера (опционально), датчик температуры дымовых газов (опционально), датчик уличной температуры (опционально) и вход для подключения комнатного термостата.

Контроллер имеет три режима управления котлом:

- **1.** Ручной режим, в котором можно вручную управлять насосами, вентилятором и шнеком.
- 2. Классический режим, в котором контроллер использует пользовательские настройки времени подачи топлива и мощности вентилятора.
- **3.** Адаптивный режим AirFlow©, в котором контроллер может самостоятельно подстраивать количество подаваемого воздуха и объем топлива для поддержания заданной температуры и оптимального горения.

2 Лицевая панель и главный экран

На главном экране отображается основная информация о состоянии системы: текущие и заданные температуры; режим работы контроллера; режим работы насосов; состояния выходных каналов управления; уровень топлива. Лицевая панель показана на рисунке 1. Обозначения пиктограмм лицевой панели показано в таблице 2.

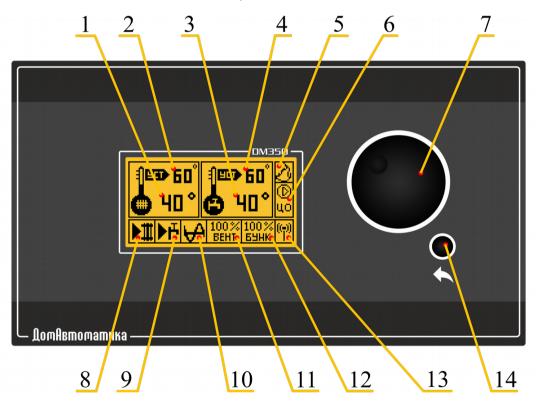


Рисунок 1 - Лицевая панель (1 - текущая температура котла (ЦО); 2 - заданная температура котла (ЦО); 3 - текущая температура ГВС; 4 - заданная температура ГВС; 5 - состояние (запущен/остановлен); 6 - режим работы насосов; 7 - "шайба" управления; 8 - насос ЦО (включен/выключен); 9 - насос ГВС (включен/выключен); 10 - шнек подачи топлива (включен/выключен); 11 - мощность вентилятора; 12 - уровень бункера; 13 - индикатор состояния GPRS соединения; 14 - кнопка назад)

Для того, чтобы зайти в меню или подменю контроллера необходимо однократно нажать на «шайбу» управления. Перемещение по меню осуществляется вращением «шайбы» влево/вправо, редактирование параметров организовано аналогично. Для возвращения на уровень назад и/ или сохранения параметра необходимо нажать кнопку «назад».

Таблица 2 - Обозначение пиктограмм

(D) цо	(BE	(D)	Ð	Ó	((-))
Только ЦО	Приоритет ГВС	Параллель- ные насосы	Остановлен	Запущен	GPRS соединение установлено

3 Задняя панель

На задней панели расположены выводы датчиков, каналов управления, переключатель питания и предохранитель.

Ко входу «Термостат» могут подключаться термостаты имеющие выход сухой контакт (нормально замкнутый/нормально разомкнутый, настраивается в меню контроллера).

Ко входу «Бункер» могут подключатся датчики имеющие нормально замкнутый сухой контакт.

Ко входу «t°Дым» может подключаться высокотемпературный датчик для измерения температуры дымовых газов.

Ко входу «t°Улица» может подключаться выносной датчик для измерения уличной температуры.

3.1 Замена предохранителя

ВНИМАНИЕ! Не допускается замена предохранителя на включенном в сеть контроллере. Не допускается установка предохранителя с большим номинальным током. Не допускается установка проволочной перемычки «жучка».

Замена предохранителя допускается только на аналогичный по характеристикам и номиналу. Номинал предохранителя $250 \, B$, $6.3 \, A$, размерами 5×20 . Предохранитель должен быть c задержкой срабатывания (медленный). Артикул рекомендуемого типа предохранителя $021806.3 \, \mathrm{MXP}$.

Для замена предохранителя необходимо открутить колпачок держателя предохранителя, расположенного на задней панели.

4 Описание меню контроллера

Вход в меню осуществляется однократным нажатием на «шайбу» управления, расположенную на лицевой панели прибора.

ВАЖНО! Изменять режимы управления котлом, активировать/деактивировать входные каналы(термостат, бункер) можно только в режиме «стоп». Изменять настройки времен работы шнека и мощности вентилятора можно в режиме «работа», однако их применение произойдет только после завершения внутреннего цикла, либо после перевода контроллера в режим «стоп».

1. Запуск/Стоп

Функция запуска и остановки работы котла.

2. Ручной режим

Меню ручного управления, подключенных к контроллеру исполнительных устройств. При входе в ручной режим контроллер автоматически переводит контроллер в режим «стоп».

2.1. Шнек (вкл/выкл)

Функция включает/выключает шнек подачи топлива.

2.2. Насос ЦО (вкл/выкл)

Функция включает/выключает насос ЦО.

2.3. Насос ГВС (вкл/выкл)

Функция включает/выключает насос ГВС.

2.4. Вентилятор (вкл/выкл)

Функция включает/выключает вентилятор с постоянной мощностью вращения, которая задается в диапазоне от 10 до 100% в пункте меню \rightarrow вентилятор \rightarrow максимальная мощность.

2.5. Реверс (вкл/выкл)

Функция включает/выключает обратный ход шнека подачи топлива.

3. Шнек подачи

Меню настройки циклов работы и перерыва шнека подачи топлива.

3.1. Нагрев

Меню настройки параметров работы шнека во время набора температуры.

3.1.1. Работа (секунд)

Время, в течении которого шнек будет включен. Значение параметра от 1 до 180 секунд. Время подачи выбирается в соответствии с мощностью котла, видом топлива, а также его калорийностью.

3.1.2. Перерыв (секунд)

Время, в течении которого шнек будет выключен. Значение параметра от 1 до 180 секунд. Время перерыва выбирается в соответствии с мощностью котла, видом топлива, а также его калорийностью.

3.2. Поддержка (доп.)

Режим поддержки необходим для поддержания тления во время длительного пребывания температуры котла выше заданной.

3.2.1. Работа (секунд)

Время в течении которого шнек будет включен. Значение параметра от 1 до 180 секунд.

3.2.2. Перерыв (минут)

Время в течении которого шнек будет выключен. Значение параметра от 1 до 180 секунд.

4. Вентилятор

Меню настройки параметров работы вентилятора.

4.1. Поддержка

Меню настройки продувок вентилятора в режиме поддержки.

4.1.1. Работа (секунд)

Время, в течении которого вентилятор будет включен. Значение параметра от 1 до 180 секунд.

4.1.2. Перерыв (секунд)

Время, в течении которого вентилятор будет выключен. Значение параметра от 1 до 180 секунд.

4.2. Максимальная мощность

Параметр задающий максимальную мощность вентилятора. Значение параметра от 10 до 100 %.

5. Температура

Меню настройки температур.

5.1. Температура ЦО

Параметр задает температуру ЦО в диапазоне от 40 до 85 °C.

5.2. Гистерезис ЦО

Параметр определяющий запаздывание перехода в режим нагрева. Значение параметра от 1 до 10 °C.

5.3. Температура ГВС

Параметр задает температуру ГВС в диапазоне от 40 до 85 °C.

5.4. Гистерезис ГВС

Параметр определяющий запаздывание переключения насоса ГВС. Значение параметра от 1 до 10 °C.

6. Настройки

Меню расширенной настройки контроллера.

6.1. GSM (вкл/выкл)

Функция включения/выключения GSM модуля. Если SIM-карта не установлена, необходимо выключить GSM.

6.2. AirFlow

Настройка алгоритма управления котлом AirFlow©.

6.2.1. AirFlow (вкл/выкл)

Включение параметра активирует режим AirFlow©. Если параметр выключен, контроллер работает в классическом режиме.

6.2.2. Коэффициент подачи (%)

Значение коэффициента подачи шнека определяет насколько сильно увеличится время подачи топлива при увеличении разницы между требуемой и текущей температурой. То есть чем ниже текущая температура относительно требуемой, тем больше топлива будет подаваться в горелку. Коэффициент подачи подбирается эмпирически. Значение параметра от 1 до 100.

6.2.3. Коэффициент вентилятора (%)

Грубая подстройка мощности вентилятора для режима AirFlow©. Значение коэффициента вентилятора (КВ) определяет насколько сильно увеличится мощность наддува при увеличении разницы между требуемой и текущей температурой. То есть чем ниже текущая температура относительно требуемой, тем мощность вентилятора будет больше. Коэффициент вентилятора подбирается эмпирически. Значение параметра от 10 до 100.

6.2.4. Коэффициент вентилятора точный (%)

Коэффициент вентилятора точный необходим для плавной подстройки мощности вентилятора для режима AirFlow©. Коэффициент вентилятора точный подбирается эмпирически. Значение параметра от 0 до 100.

6.2.5. Дым. датчик

Меню настройки датчика температуры дымовых газов.

6.2.5.1. Состояние (вкл/выкл)

Включение/выключение датчика дымовых газов.

6.2.5.2. Макс. температура

Максимальная температуры дымовых газов при достижении которой, контроллер просигнализирует об аварии и остановит работу котла. Превышение этой температуры означает, что котел забит сажей и его необходимо почистить. Для защиты от ложных срабатываний, контроллер не учитывает это температуру в течении 30 минут после запуска. Значение параметра от 120 до 300 °C.

6.2.5.3. Температура сейчас

Текущая температура дымовых газов. Для обновления значения необходимо вращать «шайбу» управления вправо.

6.3. Расписание

Меню для просмотра недельного расписания. Редактирование настроек расписания из этого меню невозможно.

6.3.1. Расписание ЦО

Просмотр настроек недельного расписания для контура ЦО. Если активировано ручное управление температурой (из мобильного приложения) на экране будет показано сообщение «Активирован ручной режим».

6.3.2. Расписание ГВС

Просмотр настроек недельного расписания для контура ГВС. Если активировано ручное управление температурой (из мобильного приложения) на экране будет показано сообщение «Активирован ручной режим».

6.4. Термостат

6.4.1. Типа (о/з)

Выбор типа термостата. Выкл — нормально разомкнутый, вкл — нормально замкнутый.

6.4.2. Режим (вкл/выкл)

Используется термостат или нет.

6.5. Журнал ошибок

Черный ящик устройства, отображает три последние аварии, дату и время их возникновения.

6.6. Режим работы

Меню выбора режима работы насосов. Можно выбрать один из следующих режимов работы:

• только отопление

(задействован только насос ЦО, используется в системах без горячего водоснабжения);

• только гор.вода

(летний режим, задействован только насос ГВС);

• параллельные насосы

(режим параллельной работы насосов ЦО и ГВС).

6.7. Реверс шнека

Меню настройки реверса шнека.

6.7.1. Настройка

6.7.1.1. Реверс (вкл/выкл)

Включение параметра, активирует функцию реверса.

6.7.1.2. Количество попыток

Количество попыток реверса шнека. Значение от 2 до 7.

6.7.1.3. Период в минутах

Время, в течении которого учитываются попытки реверса. Значение от 7 до 15 минут.

6.7.2. Пороговый ток

Значение тока при котором контроллер будет детектировать заклинивание шнека. Значение от 100 до 5000 мА.

6.7.3. Текущий ток

Текущий ток потребления электропривода шнека. Для обновления значения необходимо вращать «шайбу» управления вправо.

6.8. Настройки затухания

Меню настройки автоматического перехода контроллера в режим «стоп» при потухании котла.

6.8.1. Минимальная t С

Минимальная температура при снижении температуры котла ниже которой, контроллер будет считать, что котел потух.

6.8.2. Время в минутах

Время (от начала запуска), в течении которого котел должен набрать температуру выше чем «минимальная температура», иначе он будет считаться потухшим.

6.9. Погодозависимость

Меню настройки погодозависимого регулирования.

6.9.1. Состояние (вкл/выкл)

Функция включения/выключения погодозависимого регулирования.

6.9.2. Настройка точек

-10 градусов

Требуемая температура теплоносителя при -10 °C.

-25 градусов

Требуемая температура теплоносителя при -25 °C.

• -40 градусов

Требуемая температура теплоносителя при -40 °C.

6.9.3. Температура С

Текущая температура на улице. Для обновления значения необходимо вращать «шайбу» управления вправо.

6.10. Заводские настройки

Меню сброса настроек до заводских значений.

6.11. Главный экран

Меню индивидуальной настройки главного экрана. В качестве дополнительной информации на главном экране, можно выбрать один из следующих датчиков:

- датчик ГВС;
- датчик t улицы;
- датчик тока шнека;
- д. t дымовых газов.

Данные с выбранного датчика будут отображаться на главном экране, в левом поле информации.

6.12. Сброс ошибок

Сброс ошибок после возникновения аварии.

7. Заполнить бункер

Меню настройки датчиков бункера.

7.1. Заполнен 100%

Указать контроллеру, что бункер заполнен.

7.2. Пустой 0%

Указать контроллеру, что бункер пуст.

7.3. Датчик крышки (вкл/выкл)

Использовать/не использовать датчик закрытия крышки бункера.

8. Мобильное приложение

Информационное меню мобильного приложения и GSM-модуля. В меню отображается номер котла (уникальный идентификатор контроллера) и уровень сигнала (хороший сигнал; слабый сигнал; сигнала нет).

5 Датчики

Контроллер DM350 имеет несколько специализированных датчиков для контроля рабочих параметров котла.

Датчик температуры ЦО устанавливается непосредственно на котле, на него ориентируется контроллер при управлении котлом.

Датчик температуры ГВС устанавливается на бойлер, в этом случае контроллер может переводить котел в режим работы на ГВС.

Датчик температуры шнека подачи топлива устанавливается на шнек, это аварийный датчик, в случае возгорания топлива в трубе шнека (температура шнека больше 75 °C) контроллер выдаст ошибку и автоматически включит подачу топлива на 2 минуты, после чего выдержит паузу в 4 минуты и повторит измерение температуры. Если температура шнека пришла в норму, то контроллер остановит подачу, в противном случае контроллер будет циклически включать шнек до того момента, пока температура не упадет ниже 75 °C. Эта функция активна даже когда контроллер находится в режиме «стоп».

ВНИМАНИЕ! Функция контроля температуры шнека не может гарантировать предотвращение возгорания топлива в бункере. При заклинивании шнека, горящий уголь может оставаться в шнеке. Рекомендуется применять дополнительные системы защиты.

Аварийный датчик перегрева котла (термик) устанавливается непосредственно на котел. Он работает независимо и принудительно размыкает цепь вентилятора наддува при превышении температуры теплоносителя в 90 °C. При возвращении температуры в норму, цепь замыкается автоматически.

ВНИМАНИЕ! Запрещается эксплуатация контроллера с поврежденным, либо не установленным на котел аварийным датчиком перегрева.

Датчик крышки бункера предназначен для контроля за положением крышки бункера. Если эта функция активирована, контроллер не даст запустить котел, когда крышка открыта, либо остановит работу котла, если крышка откроется во время работы.

Функция контроля положения крышки бункера необходима для того, чтобы оградить пользователя от работы котла в опасных режимах.

Активировать/де активировать датчик крышки бункера можно в $меню \rightarrow 3$ аполнить бункер $\rightarrow \delta$ атчик крышки.

Устанавливать датчик крышки бункера необходимо таким образом, чтобы он надежно детектировал даже небольшие углы открытия крышки, в тоже время он не должен давать ложные срабатывания при плотно закрытой крышке.

Датчик температуры дымовых газов предназначен для контроля температуры отходящих газов. Если эта функция активирована, контроллер может ограничивать расход воздуха для повышения эффективности сжигания топлива. А также контролирует загрязнение поверхностей теплообменника.

Активировать/де активировать датчик температуры дымовых газов можно в *меню* — *настройки* — *AirFlow* — *дым. датчик* — *состояние*.

Устанавливать датчик температуры дымовых газов необходимо вблизи выхода дымохода из котла. В трубе дымохода должна иметься тон-костенная гильза с внутренним диаметром 6 мм и глубиной 35÷40 мм.

Датчик уличной температуры предназначен для погодозависимого управления работой котла. Он позволяет автоматически подбирать температуру теплоносителя в зависимости от температуры на улице.

Активировать/де активировать датчик уличной температуры можно в *меню настройки погодозависимость состояние.*

Устанавливать датчик уличной температуры следует на северной стороне дома (недопустимо попадание прямых солнечных лучей), на уровне не ниже 1,5 м над землей, вдали от окон и систем вентиляции.

6 Выходные каналы

Контроллер DM350 имеет несколько каналов управления котлом: насос ЦО, насос ГВС, вентилятор наддува, шнек подачи топлива с функцией реверса.

Канал насоса ЦО может использоваться для управления насосом циркуляции теплоносителя через теплообменник котла. Включение насоса ЦО происходит автоматически, при достижении температуры котла (датчик температуры ЦО) в 40 °C.

Канал насоса ГВС используется для автоматической загрузки бойлера. Для того, чтобы использовать эту функцию, в настройках контроллера необходимо выбрать режим работы насосов «параллельные насосы», либо «приоритет ГВС». Также необходимо установить датчик температуры ГВС на бойлер и подключить насос ГВС к контроллеру.

Канал вентилятора используется для управления и плавной регулировки оборотов вентилятора при помощи контроллера.

Канал шнека используется для автоматической подачи топлива в горелку.

ВАЖНО! Параллельно контактам реле шнека установлена снабберная цепь, увеличивающая срок службы реле. При этом даже при разомкнутых контактах реле на проводах управления шнеком присутствует электрический потенциал. Это может приводить к нестабильной работе контакторов, либо реле, подключенных к каналу для управления шнеком. Применяемое оборудование рекомендуется согласовывать с производителем.

7 Реверс шнека

Контроллер DM350 имеет модуль реверса шнека. Он осуществляет контроль тока, потребляемого электроприводом шнека. При заклинивании шнека, ток электропривода возрастает в 2÷2,5 раза и если это значение превышает пороговый уровень, установленный пользователем, контроллер детектирует заклинивание. После этого контроллер останавливает подачу и переходит в состояние «остановлен», выждав паузу в одну секунду, контроллер включает реверс шнека на 5 секунд, затем вновь выждав паузу в одну секунду, пробует протолкнуть топливо вперед, если превышение тока *не было зафиксировано* контроллер переходит в штатный режим работы, но уменьшает количество оставшихся попыток реверса на единицу.

Если превышение тока *было зафиксировано* вновь, контроллер проверяет количество оставшихся попыток и если попытки не израсходованы, вновь повторяет процедуру реверса. Если все попытки *были израсходованы*, контроллер включает реверс шнека на 5 секунд, останавливает котел и выдает ошибку, извещающую о том, что шнек заклинил.

Количество попыток реверса можно установить в меню контроллера от 2 до 7. Также можно установить время, от 7 до 15 минут, в течении которого эти попытки будут учитываться, по истечению этого времени количество использованных попыток реверса будет сброшено.

Пороговый ток реверса задается от 100 до 5000 мА с шагом 100 мА. Настройка параметров реверса осуществляется в *меню* \rightarrow *настрой*ки \rightarrow *реверс шнека*.

ВНИМАНИЕ! Неправильная настройка реверса может привести к выходу из строя электропривода шнека.

Алгоритм настройки реверса:

- **1.** Подключить шнек подачи согласно разделу 7.1 Подключение шнека к контроллеру.
- 2. Активировать реверс шнека (*меню* \rightarrow *настройки* \rightarrow *реверс шне- ка* \rightarrow *настройка* \rightarrow *реверс* [вкл]).
 - 3. Установить пороговый ток в максимальное значение 5000 мА.
 - **4.** Перейти в ручной режим и *включить* шнек подачи.
- **5.** Перейти в реверс шнека и измерить текущий ток. Для этого необходимо в подменю **реверс шнека** переместить курсор на пункт **текущий ток** и постоянно вращать «шайбу» управления вправо. Поворот «шайбы» обновляет измеренное значение тока на дисплее.
- **6.** Не выключая шнека подачи, необходимо при помощи деревянного бруска заклинить шнек и быстро измерить текущий ток.
 - **7.** Перейти в ручной режим и *выключить* шнек подачи.
 - **8.** *Включить* реверс шнека, чтобы расклинить и извлечь брусок.
- **9.** Измеренное значение тока, во время клина шнека, следует уменьшить на 15÷20 % и записать это значение в параметр **пороговый ток**. Например, если измеренное значение тока равно 2500 мA, то необходимо внести значение тока равное 2000 мA.
- 10. Выставить необходимое количество попыток реверса и временной интервал.
 - 11. Запустить котел, нажав в меню на пункт запуск.

12. Заклинить шнек при помощи деревянного бруска и убедиться, что реверс шнека надежно определяет заклинивание и останавливает котел.

7.1 Подключение шнека к контроллеру

ВНИМАНИЕ! Подключение электропривода шнека следует проводить только на полностью обесточенном контроллере (вилка питания должна быть вынута из розетки). Неправильное подключение может привести к выходу из строя электропривода шнека, либо контроллера.

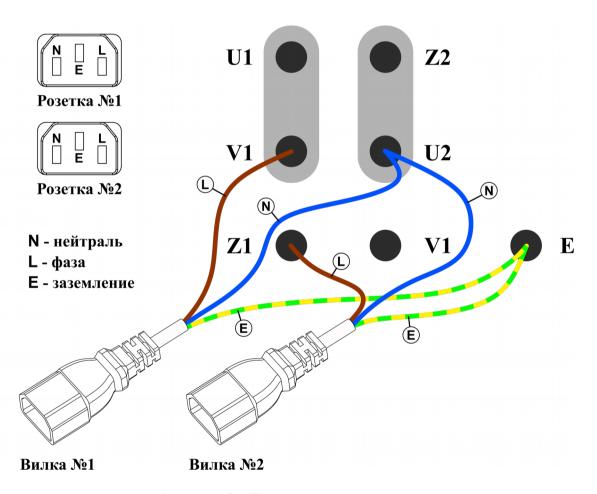


Рисунок 2 - Подключение реверса

Если электропривод шнека оборудован двумя вилками для прямого и обратного хода, следует соединить соответствующие вилки контроллера и электропривода. После чего зайти в ручной режим и проверить, что при

включении шнека, шнек вращается вперед, а при включении реверса, шнек вращается назад, если это не так, следует поменять вилки местами.

Если электропривод шнека не оборудован двумя вилками, контроллер следует подключить напрямую к клеммной колодке электропривода. Прямое подключение двигателя шнека к контроллеру производится по схеме, представленной на рисунке 2. Подключение «одноконденсаторных» и «двухконденсаторных» двигателей производится одинаково.

При подключении фазы к контакту V1 и нейтрали к контакту U2, шнек должен вращаться вперед (к горелке), при подключении фазы к контакту Z1 и нейтрали к контакту U2, шнек должен вращаться назад (от горелки).

8 GSM модуль и мобильное приложение

Для управления и полного контроля за состоянием котла в контроллере DM350 имеется GSM-модуль. Удаленная работа с контроллером осуществляется при помощи мобильного приложения, установленного на смартфоне.

При помощи мобильного приложения можно запускать/останавливать котел, управлять температурой нагрева, настраивать недельное расписание, просматривать графики температур и расхода топлива, получать мгновенные push-уведомления о всех аварийных ситуациях.

Для того чтобы начать пользоваться мобильным приложением, необходимо установить SIM-карту с возможностью выхода в интернет и зарегистрировать пользователя в мобильном приложении.

8.1 Установка SIM-карты

Для того, что бы активировать GSM-модуль, в контроллер необходимо установить SIM-карту любого оператора связи с активированным интернетом и подключить антенну. SIM-карту после покупки необходимо активировать, для этого, ее следует вставить в смартфон для получения автоматических настроек беспроводной передачи данных и убедиться что мобильный интернет работает (для этого можно зайти на dm-iot.ru).

ВАЖНО! Перед установкой SIM-карты и подключением антенны необходимо выключить контроллер.

Установка SIM-карты осуществляется в специальный лоток, находящийся на боковой стороне контроллера (рисунок 3).

Чтобы извлечь лоток, необходимо аккуратно, при помощи тонкого предмета, надавить на желтую кнопку в отверстии, справа от лотка. Лоток должен выдвинуться из устройства.

В лоток необходимо установить SIM-карту, как показано на рисунке 4, а затем лоток, аккуратно, вставить в контроллер.

После того, как SIM-карта была успешно установлена, следует включить питание контроллера и активировать GSM-модуль. Для этого следует зайти в $меню \rightarrow на стройки \rightarrow GSM$ (вкл) (чтобы изменять настройки котел должен находиться в состоянии «стоп»).

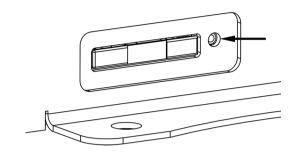


Рисунок 3 - Лоток SIM-карты

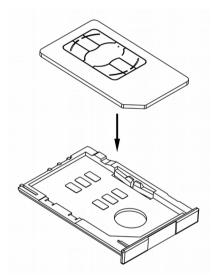


Рисунок 4 - Установка SIM-карты в лоток

Как только GSM-модуль будет активирован, контроллер запустит процесс соединение с сетью (контроллер периодически будет издавать звуковые сигналы), если соединение было установлено, на главном экране появится пиктограмма антенны. Это значит, что контроллер зарегистрировался на сервере и может работать с мобильным приложением.

Если пиктограмма антенны долго не появляется, следует проверить:

1. Баланс SIM-карты контроллера.

- **2.** Доступ в интернет на SIM-карте контроллера.
- **3.** Подключение антенны и уровень сигнала (*меню*→*мобильное приложение*). Если уровень сигнала слабый, возможно следует установить выносную антенну и расположить ее вне помещения котельной.

Во время работы, контроллер с активированным GSM-модулем, будет издавать короткие звуковые сигналы, раз в несколько минут, одиночный сигнал означает, что данные успешно переданы на мобильное приложение, двойной — что произошла ошибка при передачи данных.

Если в контроллере необходимо поменять старую SIM-карту на новую, напишите нам <u>support@dm-iot.ru</u> или позвоните по телефону +7 (391) 989-11-20, мы удалим данные старой SIM-карты.

8.2 Мобильное приложение

Для установки приложения, необходимо зайти в App Store или Google Play и в поиске набрать «DM Control Free». Либо считать QR-код справа (работает для любых устройств).

После установки мобильно приложения необходимо зарегистрироваться. Для этого нужно заполнить поля:

- Имя (любое).
- E-mail (через почту будет возможно восстановить пароль).
- Город (для определения погоды на улице).
- GMT (часовой пояс, в котором находится контроллер).
- Идентификатор котла (10-ти значный номер, находится в меню мобильное приложение номер котла).
 - Пароль (для входа в аккаунт).

Прочитать и принять пользовательское соглашение. Все, приложение готово к работе.

ВАЖНО! Регистрация нового пользователя возможно только после того, как контроллер зарегистрировался на сервере. См. главу 8.1 Установка SIM-карты.

Через мобильное приложение можно удаленно запускать/останавливать котел, регулировать температуры контуров ЦО и ГВС, настраивать недельное расписание, просматривать графики температур, получать уведомления обо всех аварийных ситуациях.

Подробную информацию об использовании мобильного приложения можно посмотреть на нашем YouTube канале — <u>ДомАвтоматика</u>. Справа QR-код для быстрого перехода на канал.

9 Настройка режима горения

9.1 Классический режим

Классический режим горения подразумевает работу котла в двух режимах: нагрев и поддержка. При нагреве — происходит активное горение топлива и набор температуры, при поддержке — тление топлива и постепенное снижение температуры до перехода в режим нагрева. Этот режим горения очень похож на режим работы котла: включено/выключено. Его относительно просто настроить и он подходит для большинства случаев.

Настройка заключается в подборе времени подачи топлива и времени перерыва между подачами топлива в режимах «нагрев» и «поддержка», а также задании рабочей мощности вентилятора и частоте продувок в режиме поддержки.

Процесс настройки параметров работы котла всегда индивидуальный и зависит от многих параметров: мощности котла, вида топлива, инертности системы отопления, теплопотерь и др. Именно поэтому параметры указанные в таблице 3 являются ориентировочными. Используя данные параметры котел может работать не эффективно, затухать или

перегреваться. Если требуемые параметры работы котла неизвестны, то следует воспользоваться параметрами таблицы 3 и затем самостоятельно их откорректировать.

ВАЖНО! Корректируя параметры работы горелки нельзя менять их все одновременно. Меняя параметры разом невозможно понять какой из них оказал наибольшее воздействие. А также менять их слишком часто- после изменения котел должен войти в номинальный режим, на это требуется от 10 до 30 минут.

Таблица 3 - Ориентировочные параметры работы горелки на угле

	Шнек подачи топлива				Вентилятор		
Мощность	ть Режим нагрева		Режим поддержки		Режим поддержки		
котла, кВт		Перерыв, с	Работа, с	Перерыв, м	Работа, с	Перерыв, м	
25	10	60	10	2	5	5	
50	10	20	10	2	10	5	
100	10	10	10	1	15	5	

^{*} Единицы измерения в таблице: с - секунды, м - минуты.

9.2 Peжим AirFlow©

Режим AirFlow© — это режим адаптивного регулирования. В этом режиме контроллер динамически изменяет мощность вентилятора и время работы шнека. Поэтому даже при некотором изменении теплопотерь отапливаемого помещения, которые возникают при изменении уличной температуры, проветривании, либо частом открывании/закрывании входных дверей, контроллер старается точно поддерживать заданную температуру. Таким образом достигается максимальная экономия топлива.

Для настройки режима AirFlow© необходимо зайти *меню* \rightarrow *настройки* \rightarrow *AirFlow*. Активировать режим AirFlow©. Если напротив пункта AirFlow© стоит значение [выкл], то контроллер работает в классическом режиме.

Контроллер не поддерживает работу с комнатным термостатом в режиме AirFlow©.

ВАЖНО! Процесс настройки параметров AirFlow© может занимать длительное время. Все параметры подбираются экспериментально.

<u>Режим AirFlow© настраивается при помощи следующих параметров:</u>

1. Коэффициент подачи

Значение коэффициента подачи шнека определяет насколько сильно увеличится время подачи топлива при увеличении разницы между требуемой и текущей температурой.

2. Максимальная мощность вентилятора

Ограничивает максимальную мощность вентилятора.

3. Коэффициент вентилятора

Грубая подстройка мощности вентилятора для режима AirFlow©. Значение коэффициента вентилятора (КВ) определяет насколько сильно увеличится мощность наддува при увеличении разницы между требуемой и текущей температурой.

4. Коэффициент вентилятора точный

Коэффициент вентилятора точный (КВТ) необходим для плавной подстройки мощности вентилятора для режима AirFlow©.

Алгоритм подбора параметров AirFlow©:

- 1. Необходимо убедиться что режим AirFlow© активирован (в настройках напротив AirFlow© стоит [вкл]).
 - 2. Разжечь котел и нажать в меню на пункт запуск.
 - 3. Установить требуемую температуру ЦО, например, 65 °C.
- **4.** Наблюдать, *в течении 1 часа*, за температурой котла (температура ЦО на дисплее) и количеством топлива в топке.
- **5.** Если температура котла за прошедший час так и не достигла требуемой, значит генерируемой мощности недостаточно, необходимо *увеличить* коэффициент вентилятора.

После изменения значения следует вновь, *в течении 1 часа*, наблюдать за температурой котла. Необходимо добиться такого состояния, когда текущая температура котла колеблется вблизи требуемой, нормальная амплитуда колебаний может составлять от 2 до 5 °C.

Если отклонения текущей температуры, относительно требуемой, больше 5-10 °C следует *уменьшить* коэффициент вентилятора. Для более точно настройки можно использовать коэффициент вентилятора

точный. КВТ влияет на компенсацию теплопотерь в процессе обогрева помещения. В большинстве случаев настройка КВТ не нужна, однако с его помощью можно добиться наибольшего КПД. На рисунке 5 показаны графики для различных значений коэффициентов вентилятора.

- **6.** Если не прогоревшее топливо падает в зольник, то необходимо *уменьшить* значение **коэффициента подачи**, если пламя горит только по центру в глубине, значит нужно *увеличить* коэффициент подачи, чтобы топлива подавалось больше.
- 7. Если по *итогам 2 часов* работы видно, что топливо горит ровно, в зольнике почти нет не догоревшего топлива и мощности котла достаточно, то настройку можно завершить и в дальнейшем, для данного типа топлива, не изменять.

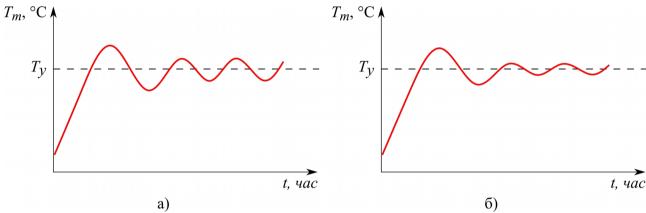


Рисунок 5 - Колебания температуры котла в зависимости от значений коэффициентов вентилятора (Tm — температура теплоносителя (температура котла), Ty — температура уставки): а) KB = 70, KBT = 0; б) KB = 70, KBT = 30

9.2.1 Датчик температуры дымовых газов

Датчик температуры дымовых газов служит для дополнительного контроля за работой котла. Он позволяет в случае необходимости ограничивать мощность вентилятора, а также контролирует загрязнение теплообменника котла и сообщает, что пришло время чистить котел.

10 Погодозависимое регулирование

Погодозависимое регулирование дает дополнительный комфорт в эксплуатации системы отопления и позволяет автоматически регулировать температуру теплоносителя в зависимости от уличной температуры.

Для того чтобы начать использовать погодозависимое регулирование, необходимо установить и подключить датчик уличной температуры. В настройках контроллера активировать погодозависимое регулирование (меню \rightarrow настройки \rightarrow погодозависимость \rightarrow состояние (вкл)) и настроить реперные точки (меню \rightarrow настройки \rightarrow погодозависимость \rightarrow настройка точек).

Настройка реперных точек необходима для задания диапазона регулирования температуры теплоносителя в зависимости от уличной температуры. На рисунке 6 показан график зависимости между этими температурами. После настройки реперных точек, контроллер сам вычисляет температуру теплоносителя в промежуточных точках и поддерживает ее.

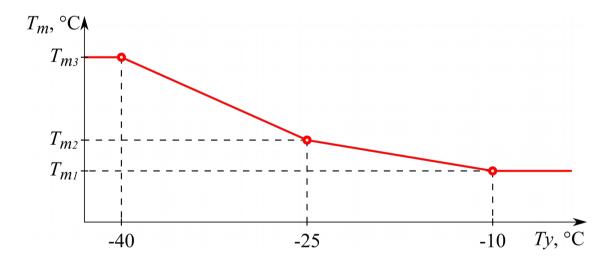


Рисунок 6 - Зависимость температуры теплоносителя от уличной температуры (Tm — температура теплоносителя (температура котла), Ty — уличная температура)

Для правильной работы контроллера необходимо так задавать температуры реперных точек, чтобы соблюдалось соотношение Tm3 > Tm2 > Tm1. При температуре на улице выше -10 °C контроллер будет поддерживать ту температуру теплоносителя, которая задана для реперной точки -10 °C. При температуре ниже -40 °C контроллер будет поддерживать ту температуру, которая задана для реперной точки -40 °C.

Комнатный термостат может работать совместно с погодозависимым регулированием. Для этого его необходимо подключить и активировать в настройках (*меню* — *настройки* — *термостат* — *режим* (вкл)).

11 Диагностика ошибок

Для предотвращения аварий, контроллер умеет отрабатывать различные аварийные ситуации и останавливать работу котла. Котел будет невозможно запустить пока проблема не решена, а ошибка не сброшена. Для сброса ошибок следует зайти в **меню настройки сброс ошибок**.

Помимо отработки аварийных ситуаций, контроллер имеет черный ящик, в который записываются три последние ошибки, их невозможно удалить самостоятельно.

При возникновении ошибки контроллер переходит в режим «стоп», включается звуковая и световая сигнализация, на главном экране выводиться окно с заголовком «ОШИБКА» и текстом ошибки (рисунок 7). Возможные варианты ошибок приведены в таблице 4.

Если GSM-модуль активирован и мобильное приложение установлено, сообщения об ошибках будут приходить и на телефон, в виде push-уведомлений.

Рисунок 7 - Окно с текстом ошибки

Таблица 4 - Перечень возможных ошибок

Текст ошибки	Описание		Что	делать?
Перегрев котла	Температура котла сила 90 °C.	•	ный насос. Уменьшить мощность	циркуляцион- максимальную вентилятора. время подачи

		топлива в режиме нагрева.
Перегрев трубы шнека	Температура шнека превысила 75 °C. Возможно произошло возгорание топлива в шнеке.	Увеличить время подачи топлива в режиме поддержки. Проверить отсутствие тяги воздуха в бункер через шнек.
Бункер открыт	Не закрыт топливный бункер.	Закрыть бункер. Проверить провод и разъем датчика закрытия бункера.
Котел затух	лась ниже установленной температуры затухания. Возможно кончилось топ-	Изменить настройки шнека подачи и вентилятора. Уменьшить температуру за-
Датчики ЦО/ГВС неис- правны	Датчики температуры ЦО/ ГВС повреждены, либо от- сутствуют.	Проверить провода датчиков на наличие повреждений. Перевести контроллер в режим «только отопление», тогда авария датчика ГВС будет игнорироваться.
Датчик шнека неисправен	Датчик температуры шнека поврежден, либо отсутствует.	Проверить провода датчика на наличие повреждений.
Заклинивание шнека	1	Проверить наличие камней и других инородных тел в шнеке. Проверить настройки реверса шнека: пороговый ток и количество попыток.
t дымогазов превышена	Температура дымовых газов превысила установленный порог.	Возможно необходима чистка котла от сажи и отложений.
Авария уличного датчика	Датчик уличной температуры вышел из строя или отсутствует.	Проверить разъем подключения датчика уличной температуры на задней панели. Проверить провод подключения датчика на наличие повреждений.

12 Тарировка объема бункера

Контроллер умеет косвенно измерять уровень оставшегося топлива в бункере. Для этого предварительно необходимо провести операцию тарировки.

Алгоритм тарировки:

- 1. Задать уровень «заполнен 100%», для этого зайти *меню* \rightarrow за-полнить бункер \rightarrow заполнен 100 %.
 - 2. Заполнить бункер доверху топливом и запустить котел.
 - 3. Дождаться пока топливо не будет израсходовано полностью.
- **4.** Задать уровень «пустой 0%», для этого зайти **меню**—**запол**-**нить бункер**—**пустой 0\%**.

Теперь, каждый раз при заполнении бункера топливом, следует указывать системе, что бункер полон. Значение оставшегося топлива, в процентах, будет отображаться на главном экране.

13 Техническое обслуживание

Техническое обслуживание (TO) — это важный аспект в длительной и безопасной работе автоматики.

Плановые ТО предусматривают два обязательных периода обслуживания: *каждый месяц* и *каждые 6 месяцев*.

Один раз в месяц следует чистить внешний корпус контроллера от пыли и других загрязнений. Для это корпус контроллера следует аккуратно протирать сухой, чистой тряпкой.

Один раз в 6 месяцев следует визуально проверять целостность корпуса контроллера, датчиков, а также проводов питания контроллера и внешних исполнительных устройств (вентилятор, шнек, насосы). В случае обнаружения повреждений, изменения структуры изоляции следует немедленно прекратить эксплуатацию контроллера.

ВНИМАНИЕ! Техническое обслуживание следует проводить только на обесточенном контроллере. Вилка питания контроллера должна быть вынута из розетки.

14 Транспортировка и хранение

Условия транспортировки С по ГОСТ 23216. Перевозки автомобильным транспортом с общим числом перегрузок не более четырех:

по дорогам с асфальтовым и бетонным покрытием (дороги 1-й категории) на расстояние от 200 до 1000 км;

по булыжным (дороги 2 и 3-й категории) и грунтовым дорогам на расстояние от 50 до 250 км со скоростью до 40 км/ч.

Перевозки различными видами транспорта:

воздушным, железнодорожным транспортом в сочетании их между собой и с автомобильным транспортом, отнесенным к условиям транспортирования Л с общим числом перегрузок от 3 до 4 или к настоящим условиям транспортирования;

водным путем (кроме моря) совместно с перевозками, отнесенными к условиям транспортирования Л, с общим числом перегрузок не более четырех

Условия хранения 2 по ГОСТ 15150. Неотапливаемое помещение в макроклиматических районах с умеренным и холодным климатом. Температура хранения от -50 до 40 °C.

ГАРАНТИЙНЫЙ ТАЛОН

Производитель предоставляет гарантию на контроллер DM350 сроком на 24 месяца с даты продажи, и не более 36 месяцев с даты производства.

Гарантийный ремонт может быть произведен только заводом изготовителем или его авторизованными сервисными центрами.

В гарантийные обязательства не входит:

- **1.** неисправности связанные с использованием контроллера в нарушение правил эксплуатации, транспортировки и хранения, указанных настоящим руководством;
- 2. механические повреждения контроллера или его отдельных компонентов;
- **3.** неисправности связанные с воздействием атмосферных разрядов и перепадов напряжения в сети;

В случае обнаружения выше перечисленных дефектов, ремонт осуществляется за счет покупателя.

Нарушения целостности пломбы, ее отсутствие, отличие серийных номеров на пломбе и гарантийном талоне, неправильно заполненный гарантийный талон, утеря гарантийного талона влекут к снятию контроллера с гарантии.

Серийный номер	_дата производства
Контроль	
Дата продажи	(подпись покупателя)
Печать продавца	

По всем вопросам гарантийного и послегарантийного обслуживания обращается по адресу: 660028, Россия, Красноярский край, г. Красноярск, ул. Телевизорная, д. 1, оф. 307. Тел.: +7 (391) 989-11-20, сайт www.dm-iot.ru.

ДомАвтоматика

ООО «НПП ДомАвтоматика» Россия, Красноярский край, г. Красноярск, ул. Телевизорная, д. 1, оф. 307

+7 (391) 989-11-20 +7 (391) 285-16-91

www.dm-iot.ru support@dm-iot.ru