Кейс "ОКРАШИВАНИЕ ПОЛИМЕРОВ"

Окрашивание в массе — наиболее распространенный и экономически целесообразный метод декорирования полимерных изделий.

Этот способ представляет собой процесс введения и предварительного перемешивания красителя (пигмента) с пластмассой перед переработкой. Окончательное перемешивание, в котором происходит распределение частиц красителя (пигмента) в массе расплава полимера с образованием гомогенной

(однородной) окрашенной смеси, производится в процессе изготовления изделия (литьем под давлением, экструзией и проч.).

Для окрашивания полимерных материалов применяется большая группа неорганических и органических пигментов, причем последних примерно в три раза больше.

1. ПРОБЛЕМНАЯ СИТУАЦИЯ

Основным требованием к окрашиванию пластмасс является равномерное распределение красителя (пигмента) в объеме полимера, а также миграционная стойкость пигмента (особенно для изделий медицинского назначения, изделий, контактирующих с пищевыми продуктами и детских игрушек).

Критерием склонности к миграции является растворимость пигментов в полимере: чем выше растворимость, тем больше склонность к миграции. О склонности пигментов к миграции можно судить и по их стойкости к органическим растворителям, в частности, к толуолу.

2. ПРИВЯЗКА К ПРЕДМЕТНЫМ ОБЛАСТЯМ ЗНАНИЯ

Химия, физика, биология.

3. ЦЕЛИ ПРОЕКТА

Образовательные:

- Формирование основ понимания механизма окрашивания полимерных изделий.
- Изучение видов пигментов для окрашивания пластмасс.

- Изучение зависимости миграционной стойкости пигмента от его химического состава и размеров частиц.
- Освоение принципов работы на «НаноТьюторе», обработка и анализ СЗМ-данных, полученных при визуализации объектов.
- Формирование основ постановки химического (физического) эксперимента; технологии проектирования (замысел-реализация-рефлексия).

Продуктовые:

- Демонстрационные образцы окрашенных пластмасс.
- Лабораторный журнал с записями исследований.
- Фотографии участков поверхности окрашенных пластмасс, сделанных с помощью СЗМ.

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ПРОЕКТА

- Демонстрационные образцы окрашенных пластмасс.
- Демонстрационная коллекция «Неорганические и органические красители (пигменты)».
- Видеофильм о процессе окрашивания пластмасс для образовательных целей.
- Набор фотографий участков поверхности окрашенных пластмасс, сделанных с помощью СЗМ.
- Статьи, доклады, презентации по темам кейса.

5. ЭТАПЫ РЕАЛИЗАЦИИ

Кейс рассчитан на 30 часов одновременной работы с группой учащихся в 8-10 человек.

ДОРОЖНАЯ КАРТА МОДУЛЯ

• •	• •		
Этап работы	Цель	Описание	Планируемый
			результат
Введение	Обоснование	Проводим	Присвоение задачи
2 ч.	актуальности	сопоставление между	кейса, распределение
	работы над	способами окрашивания	ролей
	задачей кейса	пластмасс, выбираем	
		наиболее	
		целесообразный для	
		промышленности	
Подготовительн	Выбрать	Ознакомиться с	Выбраны наиболее
ый	пигменты для	основными доступными	подходящие для
4 ч.	исследования.	органическими и	реализации проекта
		неорганическими	органические и
		пигментами, выбрать	неорганические
		наиболее безопасные	пигменты

	T		I
		для здоровья человека,	
		проверить их на	
		растворимость в	
		органических	
		растворителях (толуоле),	
		определить дозировку	
		пигмента на 100 г	
		пластмассы и рассчитать	
		стоимость пигмента для	
		окрашивания такого	
		количества пластмассы	
Реализационный	Освоить окраску	Выбираем оптимальные	Выбраны оптимальные
22 ч	пластмассы в	температурные и	технические параметры
	массе различными	временные режимы	окрашивания
	пигментами в	введения пигмента в	пластмассы
	жидком и твердом	расплав полимера	
	агрегатном		
	состояниях		
	Изучить	Приготовление образцов	Визуализация
	поверхность	для исследования СЗМ,	поверхности
	окрашенного	получение изображений	окрашенного пластика
	полимера с	поверхности	ократенного изастика
	помощью СЗМ	окрашенного пластика	
	помощью сэм	определение	
		возможности измерения	
		величины частиц	
	Исследование	введенного пигмента Использование	Отобраны пигменты с
	миграционной		наибольшей
	стойкости	органических	
		растворителей	миграционной стойкостью
	пигмента	(изопропилового спирта,	СТОИКОСТЬЮ
		ацетона) для	
		определения	
		миграционной стойкости	
		пигментов. Изучение	
		контактной миграции	
		пигмента с помощью	
		неокрашенного пластика	
	Рассмотрение	Нахождение корреляции	Составлены
	факторов,	между размерами частиц	рекомендации для
	влияющие на	пигмента, его	отбора пигментов с
	миграционную	химического состава и	наибольшей
	стойкость	миграционной	миграционной
	пигмента	стойкостью	стойкостью
	Изучение	Анализ отечественных и	Презентация, доклад,
	способов	зарубежных разработок	стенд
	модификации	по модификации	
	пигментов для	пигментов; возможно,	
	увеличения их	предложение своего	
	миграционной	(теоретического или	
1	стойкости	практического) способа	
	CIONROCIN	по данной проблематике	

Экспертный	Коммуникация с	Обсуждение результатов	Получена экспертная
2 ч.	экспертным	работы над задачей	оценка, разработан
	сообществом	кейса, рефлексия	план-график
		результатов, постановка	дальнейшей реализации
		последующих целей	(по желанию
			участников работы).

6. ОБОРУДОВАНИЕ И МАТЕРИАЛЫ

- 1. Лабораторный двухроторный смеситель
- 2. Форма для прессования
- 3. Сканирующий зондовый микроскоп («НаноТьютор» с программным обеспечением)
 - 4. Технологическая установка для изготовления наноигл
 - 5. Аналитические и лабораторные весы
 - 6. Устройство для пипетирования объемом 5 и 10 мл
- 7. Лабораторное оборудование: химические стаканы на 25 мл, мерные цилиндры на 25 мл, шпатели, бумажные фильтры, стеклянные конические воронки, ватные диски
 - 8. Органические растворители: толуол, изопропиловый спирт, ацетон.
- 9. Неорганические вещества: оксид железа (III), сульфат железа (II), оксид цинка, тальк, сажа, гидроксид калия.
 - 10. Органические красители
 - 11. Полиэтилен высокого давления
 - 12. Пленка из полиэтилентерефталата (толщиной 100 мкм)

Список использованных источников

- 1. Бастиан М. Окрашивание пластмасс (Пер. с нем./ Под ред. Узденского В.Б.). СПб.: Профессия, 2011 500 с.
- 2. А. Е. Заикин. Оценка качества диспергирования нанонаполнителя в полимерной матрице при помощи сканирующей зондовой микроскопии. Вестник Казан. технол.ун-та, 2001 С. 47 65.
- 3. Кричевский Г.Е. Структурная окраска // Химия и жизнь. 2010 № 11. С. 11.
- 4. Наноквантум тулкит. Университет ИТМО: М. Мухин, И. Мухин, А. Голубок. М.: Фонд новых форм развития образования, 2017 128 с.