От простого к сложному при решении расчетных задач по химии

Работа учителя химии и биологии МБОУ «Маганинская СОШ им. С. И. Тимофеева - Кустуктаанап» Никифоровой Е. И.

Обоснование и актуальность темы:

Актуальность выбранной темы определяется тем, что умение решать расчётные задачи является одним из основных показателей уровня химического развития, глубины и полноты усвоения учащимися теоретического материала, наличия у них навыков приобретённых знаний с достаточной самостоятельностью. Обучению решению химических задач всегда придавалось большое значение. В программах, может руководствоваться учитель, заложен системный подход к обучению решению задач, регулярное выполнение которых сформировать у учащихся химическое мышление. Однако небольшое количество часов, отводимое для изучения химии, отсутствие внутренней мотивации к обучению решению химических задач у большинства школьников и ряд других причин не дают возможности осуществить этот подход в полной мере. Осуществляемое в соответствии с программой обучения, часто приводит к перегрузке учащихся, не давая гарантии того, что они приобретут умения и выработают навыки решения хотя бы типовых задач по химии. Не усвоив и не отработав в достаточной степени один вид задач или способ их решения, учащиеся вынуждены переходить к изучению другого материала. Следующий вид задач они воспринимают как что-то абсолютно новое и не связанное с уже известным. В результате этого у значительной части учащихся не формируется общий подход к решению химических задач и отсутствуют умения их решать. А ведь мы знаем, что химия это наука требующая знаний именно по решению задач.

Цель работы:

Выяснить возможность использования алгоритмов типовых задач в решении задач повышенного и высокого уровня сложности.

Задачи:

- 1. Изучение методической литературы по теме «Способы решения расчетных задач по химии»;
- 2. Составить алгоритмы решения типовых задач и задач повышенного и высокого уровня сложности;
- 3. Показать методику обучения учащихся решению расчетных задач по химии по принципу «от простого к сложному».

Объект – расчетные задачи по химии.

Предмет – способы и алгоритмы решения расчетных задач по химии.

Гипотеза: Решение расчетных задач по химии продолжает вызывало и всегда вызывать значительные затруднения у многих учащихся, как изучающих химию на базовом, так и на профильном уровне. Методика обучения учащихся решению расчетных задач во время изучении нового типа при задач, элективных курсах и при подготовке к ОГЭ и ЕГЭ по химии по принципу «от простого к сложному» будет эффективным.

Алгоритмы типовых задач

1. Вычисление массовых долей элементов (%) по формулам веществ

Алгоритм 1. При расчетах по химической формуле необходимо:

- 1) найти относительные атомные массы всех элементов в ПСХЭ;
- 2) найти относительную молекулярную массу данного соединения
- 3) расчет массовых долей элементов ведется по формуле:

$$ω(Θ) = n \cdot A_r(Θ) / M_r(B-Ba)$$

2. Вычисление массы и количества вещества

Алгоритм 2. Чтобы вычислить массу определенного количества вещества или наоборот необходимо:

- 1) найти молярную массу вещества;
- 2) найти массу или количество вещества по формулам:

$$m = M \cdot n$$
; $n = m / M$

Вычисление относительной плотности газов

Алгоритм 3. Чтобы вычислить относительную плотность газа необходимо:

- 1) нужно записать относительные молекулярные массы газов;
- 2) найти относительную плотность газа по отношению к водороду или воздуху по формулам:

$$D_{H_2} = M_r(газа) / M_r(H_2); \qquad D_{H_2} = M_r(газа) / 2; D_{возд} = M_r(газа) / M_r(возд); \qquad D_{возд} = M_r(газа) / 29;$$

3) если необходимо найти относительную молекулярную массу вещества нужно пользоваться формулами:

$$M_r(ra3a) = 2 \cdot DH_2; \qquad M_r(ra3a) = 29 \cdot D_{BO3D}$$

Вычисление масс и объемов газов при нормальных условиях (н. у.)

Алгоритм 4. Чтобы вычислить массу и объем газа при нормальных условиях (н. у.) необходимо:

1) расчет объема вести используя формулы:

$$V_m = V/n$$
; $V = V_m \cdot n$; $V_m = 22,4 \pi/моль$ $V = V_m \cdot m/M$

2) расчет массы вести, используя формулы:

$$m = n \cdot M$$
; $m = V \cdot M / V_m$ (T. K. $n = V / V_m$)

Вычисление массовой доли (%) и массы вещества в растворе

Алгоритм 5. При расчетах массовой доли (%) и массы вещества в растворе используют формулы:

$$\omega\%=m(p.в-вa)\cdot 100\%\ /\ m(p-pa)$$
 или $\omega=m(p. в-вa)\ /m(p-pa)$ отсюда $m(p.в-вa)=\omega\cdot m(p-pa); \qquad m(p-pa)=m(p. в-вa)\ /\ \omega$ $m(p-pa)=m\ (p. в-вa)+m\ (p-ля)$ или $m=V\cdot p$

Расчеты, связанные со смешением растворов с известной массовой долей растворенного вещества

Алгоритм 6. В расчетах, связанных со смешением растворов с известной

массовой долей растворенного вещества необходимо:

1) определить, в каком массовом отношении (x_1 и x_2) надо взять исходные растворы (по правилу креста):

$$a$$
 c c B (x_1) a c (x_2) a c (x_2) a $-$

где а – большая; в – меньшая; с – искомая массовые доли растворенного вещества в растворе;

2) найти массы первого и второго растворов по формулам:

$$m_1 = m(p-pa) \cdot x_1 / x_1 + x_2$$

 $m_2 = m(p-pa) \cdot x_2 / x_1 + x_2$

Вывод химических формул

1. Нахождение химической формулы вещества по массовым долям элементов

Алгоритм 7. Для нахождения химической формулы по массовым долям элементов необходимо:

- 1) найти А_г элементов в ПСХЭ;
- 2) найти отношение числа атомов:

- 3) найти простейшую формулу;
- **4)** если дана плотность или относительная плотность газа по другому , то находим M_r вещества и сопоставим с M_r простейшей формулы:

$$M_r = 29 \cdot D_{\text{возд}}$$
; $M_r = 2 \cdot D_{\text{H}_2}$; $M = p \cdot V_{\text{m}}$

$$k = \frac{M_r \text{ (в-ва)}}{M_r \text{ (прост. } \phi.)}$$

5) найти истинную формулу вещества.

2. Определение молекулярной формулы газообразного вещества по продуктам сгорания

Алгоритм 9	Пример. При сгорании органического вещества массой 8,6 г получен
Порядок действий	СО ₂ массой 26,4 г и воды 12,6 г. относительная плотность паров вещества по воздуху равна 2,966. Определите молекулярную формулу вещества.
1. Составьте краткую запись условия задачи	Дано: M (в-ва) = 8,6 г; M (CO_2) = 26,4 г M (H_2O) = 12,6 г; $D_{{\scriptscriptstyle BO3\!\!\!/}}$ = 2,966 Найти: M .ф.
2. По продуктам сгорания вещества запишите формулу углеводорода, отражающую качественный и количественный его состав, обозначив число атомов элементов в молекуле неизвестными X и У:	C_xH_y
3. Запишите уравнение реакции горения вещества	$2C_xH_y + 4x+y/2O_2 = 2xCO_2 + yH_2O$
4. Найдите молярную массу сгоревшего вещества	$M (B-Ba) = D_{\text{возд}} * M_{\text{возд}} = 2,966 * 29 = 86 \ \Gamma/\text{моль}$
5. Определите молярные массы	$M(CO_2) = 44 \ \Gamma/моль$ $M(H_2O) = 18 \ \Gamma/моль$
6. Над формулами веществ запишите данные из условия задачи:	8,6г 26,4г 12,6г
7. Под формулами запишите количество молей каждого вещества по уравнению реакции и массы этих веществ	$2C_xH_y + 4x+y/2 O_2 = 2x CO_2 + yH_2O$ $8,6\Gamma$ $26,4\Gamma$ $12,6\Gamma$ $2C_xH_y + 4x+y/2 O_2 = 2x CO_2 + yH_2O$ 2 моль $2x$ моль y моль $M=86\Gamma/$ моль $M=44\Gamma/$ моль $M=18\Gamma/$ моль $m=172$ Γ $m=44*2x$ Γ $m=18y$ Γ
8. Найдите число молей углерода, входящих в молекулу вещества, составив и решив пропорцию	$8,6 \ \Gamma : 172 \ \Gamma \ = \ 26,4 \ \Gamma : 88x \qquad X = 6 \ моль$
9. Найдите таким же образом число молей водорода	$8,6 \ \Gamma$: 172 Γ = 12,6 Γ : 18у $\qquad \qquad$ У = 14 моль
10. Запишите формулу вещества11. Запишите ответ	C_6H_{14} Omsem: C_6H_{14}

Вычисление по химическим уравнениям массы и количества вещества

Алгеритм 10	Пример. Определить массу оксида магния, образующегося
	при взаимодействии 6 г магния с кислородом. Какое
Порядок действий	количество вещества оксида магния получилось в результате
	реакции?
1. Записать условие задачи	Дано: $m(Mg) = 6 \Gamma$
	Найти: m(MgO) - ? n(MgO) - ?
2. Составить уравнение реакции	$2Mg + O_2 = 2MgO$
3. Указать количественные отношения, в	$2Mg + O_2 = 2MgO$
которых в данной реакции участвуют исходные	2 моль 1 моль 2 моль
и продукты	(из уравнения)
4. Определить количество каждого вещества по	
известной из условия массе	n = m/M; n(Mg) = 6/24 = 0.25 моль
5. Подписать полученные значения количества	$2Mg + O_2 = 2MgO$
веществ под уравнением реакции	2 моль 1 моль 2 моль
	(из уравнения)
	0,25 моль x моль
	(из расчета)
6. Определить искомое в задаче количество	Если из 2 моль Mg образуется 2 моль MgO, значит, из 0,25
вещества	моль Mg образуется 0,25 моль MgO:
	$2Mg + O_2 = 2MgO$
	0,25 моль 0,25 моль
	(из расчета)
7. Найти массу образовавшегося вещества	$\mathbf{m} = \mathbf{M} \cdot \mathbf{n}$
	$M(MgO) = 24 + 16 = 40 \ \Gamma/MOЛЬ$
	$m(MgO) = 40 \ \Gamma/моль \cdot 0,25 \ моль = 10 \ \Gamma$
8. Записать ответ	Ответ: 10 г, 0,25 моль MgO

Вычисление объема газа, необходимого для реакции с определенным объемом другого газа

Порядок действий	Пример. Определите, какой объем кислорода потребуется для сгорания 2 л аммиака?
1. Записать условие задачи	Дано: $V(NH_3) = 2 \pi$ Найти: $V(O_2)$ - ?
2. Составить уравнение реакции	$4NH_3 + 3O_2 = 2N_2 + 6H_2O$
3. Указать количественные отношения, в которых в данной реакции участвуют исходные и продукты	2π
4. Составить пропорцию	$2\pi : 4\pi = x\pi : 3\pi$
5. Решить пропорцию	$x = 2 \cdot 3 / 4 = 1,5$ $x = 1,5$ π
6. Записать ответ	$Omsem:$ для сгорания 2 л NH_3 нужно 1,5 л O_2 .

Расчеты по термохимическим уравнениям

Порядок действий	Пример. При сгорании магния массой 3 г
	выделяется 75,15 кДж теплоты. Вычислите
	тепловой эффект реакции.
1. Записать условие задачи	Дано: $m(Mg) = 3 \Gamma$
	Q' = 75,15 кДж
	Найти: Q - ?
2. Записать термохимическое	$2Mg + O_2 = 2MgO + Q$
уравнение в общем виде	
3. Над формулой указать данные задачи	3 г 75,15 кДж
	$2Mg + O_2 = 2MgO + Q$
4. Под формулами написать:	
а) количества вещества (n)	3 г 75,15 кДж
б) молярную массу (М)	$2Mg + O_2 = 2MgO + Q$
(молярный объем (V_m))	n 2 моль х кДж
в) массу (объем) вещества	М 24 г/моль
исходя из формулы:	m 48 г
$m = M \cdot n (V = V_m \cdot n)$	
5. Составить пропорцию и найти	3/48 = 75,15/x
тепловой эффект реакции	x = 1202
	Q = 1202 кДж
6. Составить термохимическое	Термохимическое уравнение:
уравнение, которое и является ответом	$2Mg + O_2 = 2MgO + 1202 кДж$
задачи	

Расчеты по химическим уравнениям при условии, что одно из реагирующих веществ дано в избытке

Порядок действий	Пример. Какой объём газа выделится при
	взаимодействии 6,5 г цинка с 19,6 г серной
	кислоты?
1. Записать условие задачи	Дано: $m(Zn) = 6.5 \ \Gamma; m(H_2SO_4) = 19.6 \ \Gamma$
	Найти: V(H ₂) - ?
2. Составить уравнение реакции	$\underline{Zn} + \underline{H_2SO_4} = ZnSO_4 + \underline{H_2}$
3. Над формулой указать данные задачи	6,5 г 75,15 г хл
	$\underline{Zn} + \underline{H_2SO_4} = ZnSO_4 + \underline{H_2}$
4. Под формулами написать:	6,5 г 75,15 г хл
а) количества вещества (n)	$\underline{Zn} + \underline{H_2SO_4} = ZnSO_4 + \underline{H_2}$
б) молярную массу (М)	1 моль 1 моль 1 моль
(молярный объем (V_m))	24 г/моль 98 г/моль 22,4 л/моль
5. Определить количества веществ	n = m/M $n(Zn) = 6.5:65 = 0,1$ моль
реагентов и определить какое из этих	$n(H_2SO_4) = 19,6:98 = 0,2$ моль
веществ дано в избытке	B ещество H_2SO_4- в избытке, расчёт по
	веществу Zn.
6. Определить количество вещества	
продукта реакции по количеству	$n(H_2) = n(Zn) = 0,1$ моль
вещества, данного в недостатке и	$V = n \cdot V_m$
перевести его в массу (объём), если это	$V(H_2) = 0.1 \cdot 22.4 = 2.24 \pi$
необходимо по заданию условия задачи.	
7. Записать ответ	Ответ: объём выделившегося водорода 2,24 л.

Определение массовой (объемной) доли выхода продукта реакции в процентах от теоретически возможного

	Пример. Из 112 г жженой извести получено 120 г
Порядок действий	гашеной извести. Определите массовую выхода
	продукта от теоретически возможного.
1. Записать условие задачи	Дано: $m(CaO) = 112 \Gamma;$ $m_{прак} (Ca(OH)_2) = 120 \Gamma$
	Найти: $η$ (Ca(OH) ₂) = ?
2. Составить уравнение реакции	$CaO + H_2O = Ca(OH)_2$
3. Над формулой указать данные задачи	112 г х г
	$CaO + H_2O = Ca(OH)_2$
4. Под формулами написать:	112 г х г
а) количества вещества (n)	$CaO + H_2O = Ca(OH)_2$
б) молярную массу (М)	1 моль 1 моль
(молярный объем (V_m))	56 г/моль 74 г/моль
5. Определить количество веществ реагента и	n = m/M
продукта по условию задачи: n = m/M; n =	$n(CaO) = 112 \ \Gamma : 56 \ \Gamma/моль = 2 \ моль$
$V/V_{\rm m}$	$n(Ca(OH)_2) = n(CaO) = 2$ моль
6. Определение m (V) продукта (теоретического)	
по количеству:	$m_{\text{reop}} (\text{Ca}(\text{OH})_2) = 74 \ \Gamma / \text{моль} * 2 \ \text{моль} = 148 \ \Gamma$
$\mathbf{m} = \mathbf{M} * \mathbf{n}$ или $\mathbf{V} = \mathbf{V}_{\mathbf{m}} * \mathbf{n}$	
7. Определение выхода продукта по отношению	$\eta = \mathrm{m}_{\mathrm{прак}}/\mathrm{m}_{\mathrm{reop}}$
к теоретически возможному по формуле:	$\eta (Ca(OH)_2) = 120/148 = 0.81$ или 81%
$\eta = m_{\text{практ.}} / m_{\text{теор.}}$ или	
$\phi = V_{\text{практ.}} / V_{\text{теор.}}$	
8. Записать ответ	Ответ: $\eta (Ca(OH)_2) = 81\%$

Вычисление массы (объема) продукта реакции по известной массе (объему) исходного вещества, содержащего примеси Алгоритм 15

	Пример. Рассчитайте объем водорода,
Порядок действий	выделившегося при взаимодействии с соляной
	кислотой 325 г цинка, содержащего 20% примесей.
1. Записать условие задачи	Дано: $m_{\text{технич.}}(\mathbf{Z}\mathbf{n}) = 325 \ \Gamma$
	$\omega_{\text{прим.}} = 20\% \ (0,2)$
	Найти: $V(H_2) = ?$
2. Определите массу чистого вещества	$m_{\text{технич.}}(Zn) = 325 \Gamma;$
по формуле: $\mathbf{m}_{\text{в-ва}} = \mathbf{m}_{\text{смеси}} * \mathbf{\omega}_{\text{в-ва}}$.	ω (Zn) = 100% - 20% = 80% (0,8);
	$\omega_{\text{прим.}} = 20\% \ (0,2); \text{m} \ (\text{Zn}) = 325 * 0.8 = 260 \ \text{G}$
	$n(Zn) = 260\Gamma : 65 \Gamma/моль = 4 моль.$
3. Составить уравнение реакции	$Zn + 2HCl = ZnCl_2 + H_2$
4. Найти количества веществ, данных в	по условию: 4 моль Х моль
задаче, по уравнению и по условию.	$\underline{Zn} + 2HCl = ZnCl_2 + \underline{H_2} \uparrow$
	по уравнению: 1 моль 1 моль
	Х= 4 моль
5. Найти объем (массу)	$V(H_2) = Vm * n(H_2);$
образовавшегося вещества	$V(H_2) = 22,4$ л/моль $_*$ 4 моль $= 89,6$ л.
$V=V_{m}st n$ или	
m = M * n	
6. Записать ответ	$Omsem: V(H_2) = 89,6 \text{ л}.$

Задачи повышенного уровня сложности

Алгоритм действий при решении задач повышенной сложности:

- Анализ текста задачи. На этом этапе определяется, какие вещества и явления выступают объектами задачи и в каких отношениях они находятся между собой.
- Определение типа задачи по ключевым словам ее условия. Установить знание каких типов задач необходимо для решения данной задачи.
- Перевод текста на химический язык. Текст задачи записывается кратко с использованием условной символики. После того как данные задачи специально вычленены в краткую запись, следует перейти к анализу отношений и связей между этими данными.
- Установление отношений между данными и вопросом. На основе анализа условия и вопроса задачи определяется способ ее решения (вычислить, построить, доказать), выстраивается последовательность конкретных действий. При этом устанавливается достаточность, недостаточность или избыточность данных.
- Составление плана решения. На основании выявленных отношений между величинами объектов выстраивается последовательность действий план решения. Особое значение имеет составление плана решения для сложных, составных задач.
- Осуществление плана решения.
- Проверка и оценка решения задачи.

Задача 1. Комбинированная задача из части 1 ЕГЭ

Порядок действий	Пример. Масса этилового эфира масляной кислоты,
	полученного при взаимодействии 92 г этилового спирта и
	100 г 44% раствора масляной кислоты, равнаг.
1. Определение типа задачи по	Данная задача включает типы задач:
ключевым словам ее условия.	1) вычисление количества вещества (алгоритм 2);
	2) массовая доля растворенного вещества (алгоритм 5);
	3) задача на избыток (алгоритм 13).
2. Записать условие задачи.	Дано: $m(C_2H_5OH) = 92 \Gamma$
	$m_{p-pa}(C_3H_7COOH) = 100 \Gamma$
	$\omega(C_3H_7COOH) = 44\%$
	Найти: т(эфира) - ?
3. Составить уравнение реакции.	$C_2H_5OH + C_3H_7COOH \rightarrow C_3H_7-C-O-C_2H_5 + H_2O$
	1 моль 1 моль 1 моль
	46 г/моль 88 г/моль 102г/моль
4. Составление плана решения.	$m(C_2H_5OH) \rightarrow n(C_2H_5OH)$
	$m_{p-pa}(C_3H_7COOH) \rightarrow m(C_3H_7COOH) \rightarrow n(C_3H_7COOH)$
	п(эфира)→т(эфира)
5. Осуществление плана решения.	$n(C_2H_5OH) = m/M=92/46 = 2$ моль (избыток)
	$m(C_3H_7COOH) = m_{p-pa^*} \omega(C_3H_7COOH) = 100_*0,44 = 44 \Gamma$
	$n(C_3H_7COOH) = m/M = 44/88 = 0,5$ моль (недостаток)
	n(эфира) = 0,5моль
	m(эфира) = 102г/моль•0,5моль = 51г
6. Записать ответ	<i>Ответ:</i> m(эфира) = 51 г.

Задача 2. Комбинированная задача из части 2 ЕГЭ (задание 34)

Порядок действий	Пример. Карбонат кальция массой 10 г растворили при нагревании в
	150 мл хлороводородной кислоты (плотность равна 1,04 г/мл) с
	массовой долей 9%. Какова массовая доля хлороводорода в
	образовавшемся растворе?
1. Определение типа задачи по	Данная задача включает типы задач:
ключевым словам ее условия.	1) вычисление количества вещества (алгоритм 2);
	2) массовая доля растворенного вещества (алгоритм 5);
	3) задача на избыток (алгоритм 13).
2. Записать условие задачи.	Дано: $V(HCI) = 150 \text{ мл};$ $p(HCI) = 1,04 \text{ г/мл};$
	$m(CaCO_3) = 10 \Gamma; \qquad \omega(CaCO_3) = 9\%$
	Найти: ω(HCI) - ?
3. Составить уравнение реакции.	$CaCO_3 + 2HCI = CaCI_2 + H_2O + CO_2$
	1 моль 2 моль 1 моль
	100 г/моль 36,5 г/моль 44 г/моль
4. Составление плана решения.	$m(CaCO_3) \rightarrow nCaCO_3)$ $V(HCI) \rightarrow n(HCI)$
	$n(HCI)_{oct.} \rightarrow m_{oct.} (HCI) \rightarrow \omega(HCI)$
	$n(CaCO_3) = n(CO_2) = m(CO_2)$
	$\omega(HCI) = m(HCI)_{oct.} / m(CaCO_3) + m_{p-pa}(HCI) - m(CO_2)$
5. Осуществление плана решения.	1) $n (CaCO_3) = m/M = 10/100 = 0,1$ моль (недостаток)
	2) $m (HCI) = V \cdot p \cdot \omega = 150 \cdot 1,04 \cdot 0,09 = 14,04 \Gamma$
	n(HCI) = m/M = 14,04/36,5 = 0,38 моль (избыток)
	3) $n(HCI)_{oct.} = 0.38 - 0.2 = 0.18$ моль; $m(HCI)_{oct.} = 0.18 \cdot 36.5 = 6.57$ г
	4) $n(CO_2) = n(CaCO_3) = 0.1$ моль; $m(CO_2) = 0.1 \cdot 44 = 4.4$ г
	5) $\omega(HCI) = m(HCI)_{oct.} / m_{p-pa2}$
	$m_{p-pa2} = m(CaCO_3) + m_{p-pa}(HCI) - m(CO_2)$ $m_{p-pa}(HCI) = V \cdot p = 150 \cdot 1,04 = 156 \Gamma$
	$m_{p-pa}(HCI) = V \cdot p = 150 \cdot 1,04 = 156 r$
	$m_{p-pa^2} = 10 + 156 - 4,4 = 161,6 \ \Gamma; \omega(HCI) = 6,57/161,6 = 0,04 \ $ или 4%
6. Записать ответ	$Omeem: \omega_{\%} \text{ (HCI)= 4\%}$

Задача 3. Задача высокого уровня сложности из части 2 ЕГЭ (задание 34)

Порядок действий	Пример. При бромровании 28,8 г гомолга бензола в присутствии железа получено 35,82 г монобромпроизводного. Выход продукта составил 75 %. Известно, что при бромировании этого углеводорода на свету образуется единственное монобромпроизводное. Установите молекулярную формулу углеводорода, изобразите его струкурную формулу и напишите уравнение реакции с бромом на свету.
1. Определение типа задачи по ключевым словам ее условия.	Данная задача включает типы задач: 1) вычисление количества вещества (алгоритм 2); 2) расчёт выхода продукта реакции по отношению к теоретически возможному (алглритм 14). 3) вывод молекулярной формулы вещества.
2. Записать условие задачи.	Дано: m (гомолого бензола) = 28,8 г $M_{\text{прак}}$ (могобромпроизводного) = 35,82 г η (монобромпроиводного) = 75% Найти: C_nH_{2n} - $_6$ - ?
3. Составить уравнение реакции.	$C_6H_{2n-6} + Br_2 \rightarrow C_6H_{2n-7}Br + HBr$

4. Составление плана решения.	1) $\eta(C_6H_{2n-7}Br) \to m_{\text{теор}}(C_6H_{2n-7}Br)$ 2) $n(C_6H_{2n-6}) = n(C_6H_{2n-7}Br)$ Найти п и написать МФ углеводорода 3) Составить структурную формулу вещества и написать уравнение реакции.
5. Осуществление плана решения.	$\begin{array}{c} 1) \ \eta = m_{\text{прак}}/m_{\text{теор}}; \qquad m_{\text{теор}} = m_{\text{прак}}/ \eta \\ m_{\text{теор}}(C_6H_{2n\text{-}7}\text{Br}) = 35,82/ 0,75 = 47,75 \Gamma \\ 2) \ n(C_6H_{2n\text{-}6}) = n(C_6H_{2n\text{-}7}\text{Br}) \\ m(C_6H_{2n\text{-}6}) \ / \ M(C_6H_{2n\text{-}6}) = m_{\text{теор}}(C_6H_{2n\text{-}7}\text{Br}) \ / \ M(C_6H_{2n\text{-}7}\text{Br}) \\ 28,8/(14n-6) = 47,76/(14n-7+80); \ \text{отсюда}\ n = 9 \\ \text{Молекуляная формула вещества} - C_9H_{12} \\ 3) \\ \end{array}$
6. Записать ответ	<i>Ответ:</i> молекулярная формула углеводорода - C_9H_{12}

Заключение

Решение задач – признанное средство развития мышления учащихся, которое легко сочетается с другими средствами и приемами обучения. Включение задач в изложение учебного материала позволяет учителю осуществлять контроль за его усвоением, а учащимся – самоконтроль, что воспитывает их самостоятельность в учебной работе.

Решение расчетных задач по химии всегда вызывало и продолжает вызывать значительные затруднения у многих учащихся, как изучающих химию на базовом, так и на профильном уровне. Практика работы показывает, что одной из причин таких затруднений является нехватка времени на обучение решению расчетных задач. Именно в начале изучения курса химии закладываются основы для решения в дальнейшем более сложных и комплексных задач.

Алгоритмические предписания показывают учащимся наиболее рациональный путь решения задач. Они будут помогать учащимся решать сложные задачи, предложенные в качестве домашнего задания и при решении задач повышенного и высокого уровня сложности ЕГЭ.

Для составления алгоритмов нужно придерживаться следующих правил:

- алгоритмы должны быть четкими, без лишних слов;
- алгоритмы включают формулы, которые необходимы для решения данного типа задач;
- алгоритмы можно давать в виде схем;
- алгоритмы можно составить на примере решения конкретной задачи.

Используя изложенный материал, можно составить на каждого ученика дидактическую карту, которая включает:

- 1) краткий теоретический материал;
- 2) алгоритм решения задачи данного типа;
- 3) примеры решения задач данного типа;
- 4) задачи для самостоятельного решения.

С помощью ее можно организовать индивидуальную или групповую работу учащихся во время урока при изучении задач нового типа, в элективных курсах, а также при подготовке к ОГЭ и ЕГЭ по химии Таким образом при решении задач повышенного и высокого уровня сложности можно воспользоваться алгоритмами типовых задач. Хотя имеются еще более сложные задачи, но навыки решения расчетных задач всегда нужны.

В заключении могу сказать, что такая методика обучения учащихся решению расчетных задач по химии по принципу «от простого к сложному» будет эффективным.

Литература

- 1. Беляев Н. Н. О системном подходе к решению задач // Химия в школе, 1998, № 5, с. 45-48.
- 2. Буцкая Н. Н. К решению задач по химическим уравнениям // Химия в школе, 2001, № 5, с. 49-53.
- 3. Габриелян, О.С. Задачи по химии и способы их решения / О.С. Габриелян, П.В. Решетов, И.Г. Остроумов. М.: Дрофа, 2004.
- 4. Гольдфарб Я. Л., Ходаков Ю. В., Додонов Ю. В. Сборник задач и упражнений по химии. Учебное пособие для учащихся 7 10 классов средней школы. М: Просвещение, 1988.
- 5. Каверина А. А., Решение заданий повышенного и высокого уровня сложности. Как получить максимальный балл на ЕГЭ. Учебное пособие. Москва: Интеллект-Центр, 2016.
- 6. Каверина А. А. Единый государственный экзамен. Химия. Комплект материалов для подготовки учащихся. Учебное пособие. Москва: Интеллект- Центр, 2018.
- 7. Кушнарев А. А. Учимся решать задачи по химии. Журнал «Химия в школе», журнал «Химия в школе», 1993, 1994.
- 8. Мирзаев П. Н. К решению расчетных задач. Журнал «Химия в школе», 1988, №1
- 9. Новошинский И.И.Типы химических задач и способы их решения 8 11 классы / И.И. Новошинский, Н.С.Новошинская. М.: ОНИКС, 2006.
- 10. Протасов П.Н., Цитович И.К. Методика решения расчетных задач по химии. М.: Просвещение, 1978.
- 11. Тарасова Л. Ю. Способы решение задач. Методическое пособие по химии. Волгоград, изд. «Учитель», 1995.
- 12. Цитович И. К., Протасов П. Н. Методика решения расчетных задач по химии. Книга для учителя. М: Просвещение, 1983.
- 13. Хомченко Г. П., Хомченко И. Г. Задачи по химии для поступающих в вузы. М. Высшая школа, 1986.
- 14. Яковишин Л. А. Схемы алгоритмов решения расчетных задач. Журнал «Химия в школе», 2000, №1.