Нефть и газ

Petroleum and gas: experience and innovation

Нефть и газ: опыт и инновациии

Petroleum and gas: experience and innovation (Russia)

№ **2** Том 3 **2019**

Contents

V.F. Tomskaya, S.K. Gracheva, I.I. Krasnov, E.V. Vaganov	
Forecasting the development of oil and gas deposits with application of technology for the restriction of gas outlets in wells	3
<i>E.I. Inyakina, R.K. Katanova, M.D.Z. Alshaykhli</i> Prediction procedure for the current condensate content and loss of hydrocarbons in the form	20
D.A. Marakov, V.V. Inyakin, S.K. Gracheva, R.K. Katanova Research of properties of gas-condensate fluids under conditions of development of Samburg deposit	42
Information	63

Интернет-ресурсы: https://petroleumandgas.ru www.elibrary.ru

Обложка: Ю. Таратунин

УДК 622.276/279

ПРОГНОЗИРОВАНИЕ РАЗРАБОТКИ НЕФТЕГАЗОВЫХ ЗАЛЕЖЕЙ С ПРИМЕНЕНИЕМ ТЕХНОЛОГИИ ОГРАНИЧЕНИЯ ГАЗОПРИТОКОВ В СКВАЖИНЫ

В.Ф. Томская, С.К. Грачева, И.И. Краснов, Е.В. Ваганов

ФГБОУ ВО «Тюменский индустриальный университет, г. Тюмень, Россия ФГБОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова», Политехнический институт (филиал), г. Мирный, (Caxa) Якутия АО «НОВАТЭК - Пур», г. Новый Уренгой, Россия

FORECASTING THE DEVELOPMENT OF OIL AND GAS DEPOSITS WITH APPLICATION OF TECHNOLOGY FOR THE RESTRICTION OF GAS OUTLETS IN WELLS

	Tyumen Industrial University, Tyumen, Russia
V.F. Tomskaya, S.K. Gracheva,	North-Eastern Federal University. M.K. Ammosova,
I.I. Krasnov, E.V. Vaganov	Polytechnic Institute (branch), Mirny, (Sakha) Yakutia
ý - 5	AO «NOVATEK-Pur», Novyy-Urengoy, Russia

Контактная информация:

Томская Ванесса Фёдоровна – магистр (SPIN-код: 5693-7259; ResearcherID: AAA-9372-2020; ORCID iD: 0000-0003-4014-0246). Место работы и должность: ассистент кафедры «Разработки и эксплуатации нефтяных и газовых месторождений» ФГБОУ ВО Тюменского индустриального университета. Адрес: Россия, 625000, г. Тюмень, ул. Володарского, 36. Телефон: (3452) 28-30-27, электронный адре: vanessatomskaya@gmail.com

Грачёва Светлана Камиловна – кандидат технических наук, доцент (SPIN-код: 6534-2951; ResearcherID: A-9013-2020; ORCID iD: 0000-0003-3671-2133). Место работы и должность: доцент кафедры «Разработки и эксплуатации нефтяных и газовых месторождений» ФГБОУ ВО «Тюменского индустриального университета». Адрес: Россия, 625000, г. Тюмень, ул. Володарского, 36. Телефон: (3452) 28-30-27.

Краснов Иван Игнатьевич – кандидат технических наук, доцент (SPIN-код: 4091-6186; ResearcherID: А-5654-2018; ORCID iD: 0000-0002-6368-3289). Место работы и должность: доцент кафедры «Нефтегазовое дело» ФГБОУ ВО Северо-Восточный федеральный университет им. М.К. Аммосова, (филиал) МПТИ г. Мирный, (Саха) Якутия. Адрес: Россия, 678170, Республика Саха (Якутия), г. Мирный, ул. Тихонова, 5/1. Телефон: (41136) 4-30-73, 4-59-38, элекьтронный адре: umo_mir@mail.ru

Ваганов Евгений Викторович – магистр (SPIN-код: 1515-1728; ORCID iD: 0000-0002-0502-8948). Место работы и должность: начальник отдела геологии и разработки месторождений АО «НОВАТЭК - Пур» г. Новый Уренгой. Адрес: Россия, 629860, ЯНАО, мкр 5, д. 22, пгт. Уренгой, Пуровский район, ЯНАО. Телефон: (3494) 932-500, электронный адрес: e.v.vaganov@icloud.com

Цель исследования: оценка рецензируемых зарубежных литературных источников, изучение современной стратегии проведения мероприятий по ограничению газопритоков в добывающие скважины с применением современных водоизолирующих композиций, диагностика причин загазовывания скважин, эксплуатирующих ботуобинский горизонт Среднеботуобинскогоместорождения и обоснование разработки, осложняющих подгазовыхзалежей с применением эффективных технологий. Материалы: Приведены особенности геологического строения относительно «тонких» нефтяных оторочек с обширной газовой шапкой и подстилающим водонасыщеннымгоризонтом нефтегазоконденсатного месторождения Западной Якутии. Особое внимание уделено мероприятиям по ограничению прорыва газа из газовой шапки в скважины при разработке сложнопостроенных месторождений. Одним из способовутилизации попутного газа и совершенствования процесса эксплуатации является применение газоизоляционных экранов и горизонтальных скважин, позволяющих увеличить площадь контакта с объектом разработкидля продления безгазового периода добычи нефти. Результаты: По результатам расчетныхметодов обоснован безгазовый период работы скважин, эксплуатирующих подгазовые залежи пласта Бт дляувеличения коэффициента нефтеотдачи. Для осуществления оптимальной безгазовой выработки запасов нефти, определен безгазовый предельныйдебит, а также соответствующая ему предельная депрессия. Обоснован радиус газоизоляционного экрана для условий разработки ботуобинского горизонта и предложена технология создания искусственного экрана на основе полимерных композиций. Выводы: В результате выполненной диагностики причин загазовывания скважин, эксплуатирующих Среднеботуобинское месторождение с обширной газовой шапкой и тонкой нефтяной оторочкой. Актуальным является рассмотрение таких задач для конкретных месторождений с использованием современных методических подходов к расчету времени безгазовой эксплуатации скважин. Так, смещение акцентов в ближайшем будущем с добычи нефти из более простых по строению залежей на сложнопостроенные месторождения, требуют обобщения опыта освоения и обоснования оптимальных технологий их разработки.

Ключевые слова: ботуобинский горизонт, обширная газовая шапка, тонка нефтяная оторочка, газоизоляционный экран, безгазовый период эксплуатации, предельная депрессия, технология ограничения прорыва газа

В настоящее время большинство разрабатываемых залежей нефти, газа и газового конденсата относятся к категории сложнопостроенных месторождений. Специфика и основные трудности разработки таких залежей определяются условиями их совместного залегания в продуктивном горизонте, резко различающихся по компонентному составу и физическим свойствам, а также наличием подстилающей пластовой воды. При эксплуатации нефтегазовых и нефтегазоконденсатных залежей важным являются первоочередность выработки запасов нефти и газа. Практически возможно осуществление следующих основных вариантов: опережающаяразработка нефтяной оторочки, одновременная выработка запасов нефтяной залежи и газовой шапки и опережающая разработка газового пласта. Любая из этих систем разработки накладывает ограничения на условия извлечения одного из видов углеводородного сырья - нефти, газового конденсата или пластового газа. Наиболее типичное осложнение при разработке данных залежей является прорыв газа из газовой шапки в нефтяной пласт и подтягивание конуса газа или внедрение нефти в газовую шапку.

Для осуществления оптимальной безгазовой выработки запасов нефти, необходимо определить их одновременно предельные дебиты, а также соответствующие им предельные депрессии. Актуальным являетсярассмотрение таких задач для конкретных месторождений с использованием современных методических подходов к расчёту времени безгазовой эксплуатации скважин. Так, смещение акцентов в ближайшем будущем с добычи нефти из более простых по строению залежей на сложнопостроенные месторождения, требуют обобщения опыта освоения и обоснования оптимальных технологий их разработки. Выработка залежей нефти с трудноизвлекаемыми запасами характеризуется рядом технических, технологических и экономических ограничений, создающих препятствия для освоения таких объектов, а также ставящих под сомнение эффективность продолжения эксплуатации технологических комплексов. С другой стороны, опыт разработки таких залежей дает положительные примеры, как правило, на участках с благоприятными геологическими условиями. Отсюда просматривается общая схема разработки трудноизвлекаемых запасов как сочетание детальной структуризации залежей. геологотехнологической систематизации запасов и целенаправленного подбора технологий к их разновидностям. Геологические критерии дифференциации разных групп трудноизвлекаемых запасов всевозможные, при этом общая методология сводится к расчленению залежи как совокупности элементарных геологических тел на однородные элементы, поддающиеся опознанию и локализации посредством доступной и массовой информации.

В работе рассмотрен подход разработки обширных подгазовых зон и залежей крупных газонефтяных месторождений Западной Якутии, где сложились предпосылки для его реализации. В результате обобщения информации об основных продуктивных пластах, содержащих газонефтяные залежи, получено представление об условиях загазовывания продуктивных нефтесодержащих горизонтов. На основании рассмотренных данных исследований появилась возможность установить закономерности физико-термодинамических процессов, происходящих в залежи, а также использовать результаты при обосновании коэффициента извлечения и выборе оптимального варианта разработки.

Среднеботуобинское нефтегазоконденсатное месторождение расположено на территории Западной Якутии. В непосредственной близости от Среднеботуобинского месторождения разведаны и числятся на госбалансеТаас-Юряхское, Бес-Юряхское, Иреляхское, Мирнинское, Северо-Нилбинское, Хотого - Мурбайское нефтегазоконденсатные и нефтяные месторождения, находящиеся на различной стадии освоения (в разведке, обустройстве или разработке). Согласно принятой схеме нефтегазогеологического районирования территории Сибирской платформы Среднеботуобинское месторождение приурочено к Непско - Ботуобинской нефтегазоносной области Лено-Тунгусской нефтегазоносной провинции. В пределах нефтегазоноснойоблости (НГО) открыт ряд месторождений нефти и газа, среди которых необходимо отметить уникальное по запасам газа с конденсатом Чаяндинское месторождение. Крупными по запасам нефти являются Верхнечонское, Талаканское, Чаяндинское, Ярактинское, Северо-Талаканское, Верхневилючанское месторождения [1, 2].

Среднеботуобинское месторождение является крупным, как по запасам нефти, так и по запасам газа. Для месторождения характерно интенсивное проявление блоковой тектоники, которая привела к формированию четырех

крупных тектонических блоков: Центрального, Западного, Восточного и Северного, осложнеёных, в свою очередь, разломами более мелкого порядка. Все выделенные нарушения считаются гидродинамическими барьерами. Доказанная нефтегазоносность месторождения связана в первую очередь с отложениями ботуобинского горизонта, в котором содержится большинство запасов нефти и газа. Залежи газа с конденсатом открыты в отложениях улаханского и талахского горизонтов курсовской свиты венда, осинского горизонта билирской свикембрия. Перспективы нефтегазоносноты стисвязаны также с отложениями верхнебюкской подсвиты, преображенским горизонтом успунской свиты, горизонтов Юр-І-Ш юряхской свиты. Доказанная продуктивность Центрального тектонического блока Среднеботуобинского месторождения связана с песчаниками ботуобинскогогоризонта венда и с нижнекембрийскими карбонатными отложениями билирской свиты – осинский горизонт, пласты О-І и О-ІІ. Нефтегазоносность в пределах Северного блока выявлено в четырех горизонтах - ботуобинском, улаханском I, улаханском II, талахском. В пределах Восточного блока III вскрыт только ботуобинский продуктивный горизонт, улаханский горизонт имеет в пределах месторождения локальное распространение и в восточных блоках отсутствует. Талахский горизонт недостаточно изучен в пределах Северного блока, а в пределах Восточного блока Шего перспективы не оценивались. Ботуобинский горизонт является основным на Среднеботуобинском месторождении. Максимальный дебит нефти получен в скважине № Сбт-53 – 192 м³/сут, максимальный дебит газа Оригинальные статьи

в скважине № Сбт-86 – 1616 тыс.м³/сут, максимальный дебит воды в сквине № Сбт-7 – 144 м³/сут [3, 4].

Принимая решение о стратегии освоения месторождения, следует учитывать тот факт, что практика разработки нефтяных оторочек основана на организации барьерного заводнения, регулировании темпов отборов нефти, газа и закачки воды с целью минимизации потерь, связанных с внедрением нефти в газовую часть залежей. Современная практика разработки запасов оторочек нефти перекрываемых газовой шапкой и подстилающей водой, предполагает широкое применение горизонтальных скважин. Важным является экономический результат, который предопределяет порядок освоения запасов углеводородов, очередность и темпы разбуривания пластов, их статус: основной объект или объект возвратный [5, 6].

Применительно к газовой части нефтегазонденсатных залежей, ближайшая перспектива связана с вынужденным отбором прорывного газа скважинами добывающего нефтяного фонда. В дальнейшем темпы добычи газа предполагаются индивидуальными для каждого блока исходя из задач обеспечения утвержденного КИК и сопряжения условий разработки нефтяной оторочки.

Таким образом, с точки зрения геологотехнологических условий, в пределах Центрального тектонического блока Среднеботуобинского месторождения объектами разработки являются пласты Бт и O-I+II.

Отбор керна проводился в процессе бурения с целью изучения литологии, стратиграфии, коллекторских свойств пород, выявления в разрезе возможно продуктивных пород.

Горизонт	Пласт	Залежь	Число скважин с отбором керна	Проходка, м	Линейный вынос керна, м	Вынос керна, %
Oourourovii i	O-I		23	413,3	282,8	68,4
Осинскии	C)-II	18	252,2	168,1	66,7
Всего:		41 665,5		450,9	67,8	
Ботуобинский	Бт	Ι	26	796,3	577,9	72,6
		II	8	178,1	119,8	67,3
		III	2	50,6	26,9	53,2
		IV		12	284,7	115,7
	V 7		7	189,7	153,7	81,0
Всего:		55	1499,4	994,0	66,3	

Сведения о выносе керна из продуктивных пластов Среднеботуобинского месторождения

Таблица 1

За весь период отбор керна проводился: из нижнекембрийских отложений чарской, толбачанской, эльгянской, нелбинской, юрегинской, билирской свит; из венд-нижнекембрийских отложений юряхской свиты, из вендских отложений кудалахской, успунской, бюкской, курсовской свит и из отложений фундамента. Наибольшее количество кернового материала отобрано в интервалах залегания осинского продуктивного горизонта билирской свиты и ботуобинского продуктивного горизонта бюкской свиты. Сведения о проходке с отбором керна, выносе керна из продуктивных пластов в скважинах Центрального блока и Курунгского ЛУ представлены в табл. 1.

Макроописание керна скважин Среднеботуобинского нефтегазоконденсатного месторождения осуществлялось геологами Средне-Ленской НГРЭ ПГО «Ленанефтегазгеология». Микроизучение керна и определения коллекторских свойств в основном выполнены в лабораториях ЯКТЭ и ЛЭИС ПГО «Ленанефтегазгеология» и ВНИИГИСа, а по отдельным скважинам в лабораториях МИНХ и ГП, ВНИГРИ, ВНИИГАЗа, ВНИГНИ и Главтюменьгеологии. Стандартные исследования керна пилотных стволов проводились институтом ИННГГ СО РАН, специальные исследования ОАО «ТомскНИПИнефть ВНК» и ЗАО «НИ-ПИНЕФТЕГАЗ». Петрофизические исследования выполнены в лабораториях ВНИИГИСаи ПГО «Ленанефтегазгеология». Открытая пористость определялась методом Преображенского при насыщении образцов моделью пластовой воды или керосином. Газопроницаемость определялась методом стационарной фильтрации по воздуху на приборе ГК-5. Остаточная водонасыщенность определена в подавляющем большинстве случаев методом центрифугирования. Незначительный объем определений остаточнойводонасыщенности выполнен методами капилляриметрии: 25 образцов по скважинам №№7, 9, 13, 25, 15 образцов (№ Сбт-70пилот) и 20 образцов (№ Сбт-26-пилот). При использовании капилляриметрии применялись мембраны, имеющие давление прорыва 3,5-4,0 кг/см². Выполнено 40 определений прямым, экстракционно-дистилляционным методом на герметизированных образцах керна, отобранного в скв. № Сбт-85, вскрытие горизонта в данной скважине осуществлялось на растворе на нефтяной основе (РНО). Карбонатность пород оценивалась более чем для 70% выборки образцов, при этом оценивалось отдельно содержание кальцита и доломита [7, 8].

В 2012-2013 гг. в рамках доразведки Центрального блока Среднеботуобинского НГКМ пробурены пилотные стволы в скважинах №№ 3388, 3392, 3278 (из интервалов бюкской и курсовскойсвит отобран керн): скв. № 3388 отобрано 28,2 м; скв. № 3392 – отобрано 63,0 м; скв. № 3278 – отобрано 45,0 м. В комплекс исследований керна, отобранного из скважин №№ 3388, 3392, 3278 дополнительно были включены: определение битуминозности (пиролитический анализ); определение смачиваемости; определение проницаемости на кубических образцах в 3-х направлениях; опыты по определению влияния засоления на пористость, проницаемость и смачиваемость; ОФП в трёх средах – нефть-вода, вода-газ, газ-нефть; определение коэффициента вытеснения нефти газом, нефти водой и газа водой; термический анализ – более точное определение содержания карбонатов и ангидритов. В 2013 г. на Курунгском ЛУ пробурена разведочная скважина № Крн-1. Керн отобран из интервалов юрегинской (отобрано 11,5 м), билирской (73,5 м), юреляхской (14 м), бюкской (54 м) и курсовской (166 м) свит. К настоящему времени стандартные и специальные исследования керна в полном объеме выполнены по скважинам №№ 3388 и 3392. Исследования керна, отобранного из скв. № 3278 и № Крн-1, находятся в стадии проведения [9].

Ботуобинский продуктивный горизонт охарактеризован керном в 55 скважинах, проходка с отбором керна составила 1499,4 м, линейный вынос - 994,0 м или 66,3% от общей проходки с отбором керна. Наиболее охарактеризована керновым материалом Залежь I пласта Бтботуобинского горизонта: линейный вынос керна составляет 53,1% от всего керна пласта Бт.В процессе бурения с целью уточнения геологического строения и определения фильтрационно-емкостных свойств пород производился отбор керна в пределах карбонатных отложений осинского горизонта (пласты О-I, О-II). С отбором керна в пределах пластов О-I и О-ІІ пройдено 413,3 м и 252,2 м соответственно. Вынос керна, для данных пластов, составил 282,8 м и 168,1 м соответственно. Пласт О-І освещен керном в 23 скважинах, пласт О-Ш освещен керном, отобранного из 18 скважин.

Таким образом, керновым материалом изучены срезы 58 скважин, общая проходка с отбором керна продуктивных пластов Бт, О-I и О-II составила 2164,9 м, линейный вынос – 1444,9 м,

или 66,3% от общей проходки с отбором керна.

Извлечение запасов из газонефтяных и газоконденсатнонефтяных залежей обычно считается более сложным, чем разработки нефтяных месторождений. Специфические особенности указанных залежей (сложное геологическое строение, наличие в пласте нефти, газа, газоконденсата и воды) в определенной степени усложняют комплекс проблем, связанных с их разработкой. Это особенно характерно для крупных газонефтяных месторождений Западной Сибири (Самотлорское, Федоровское, Лянторское, Варьеганское и др.), в том числе для района Сургутского свода, где 48% текущих запасов нефти разрабатываемых месторождений приходится на долю нефтегазовых залежей. Как показывают анализы, в связи с высокой выработкой более простых по геологическому строению залежей нефти перспектива развития нефтеотдачи в этом районе будет связана, прежде всего, с освоением сложнопостроенных газонефтяных залежей. Основные запасы нефти и газа газонефтяных залежей Сургутского района сосредоточены на двух объектах – Лянторском и Федоровском месторождениях, которые характеризуются сложным геологическим строением, малыми толщинами нефтяного пласта и большой долей порового объема нефтенасыщенного пласта. Извлечение этих запасов с наибольшей нефтеотдачей и наименьшими затратами является одной из основных проблем разработки месторождений указанного типа [10, 11].

Задачам рациональной разработки газоконденсатных (ГКЗ), газоконденсатнонефтяных (ГКНЗ) и нефтегазовых залежей (НГЗ) с подошвенной водой, дано обобщение мирового опыта работы, разработки указанных залежей, разработана теория проектирования с учётом геологогидрогазодинамических особенностей НГЗ и ГКНГЗ и их классификация, рассмотрены актуальные проблемы проектирования и рациональной их разработки этих объектов. Основные сложности при разработке нефтегазовых залежей связаны с технологическими трудностями извлечения нефти, зависящими от режима их разработки. При этом в основном проявляют себя режимы растворенного газа и упруговодонапорный; первый имеет главенствующее значение и определяет конечный коэффициент нефтеотдачи, в большинстве случаев несущественный. В связи с увеличением мирового спроса на нефть и истощением запасов крупных нефтяных месторождений возрос интерес к разработке нефтегазовых залежей и нефтяных оторочек. Как известно, рациональным способом извлечения запасов нефтяной оторочки считается опережающая выработка ее с сохранением энергии газовой шапки. Однако, как показывает мировая практика, иногда полезен способ одновременного извлечения запасов нефти и газа из нефтегазовых залежей с сохранением неподвижности газонефтяного контакта [12].

Определенный опыт разработки нефтегазовых залежей имеется и в нашей стране. Например, после осуществления ППД и барьерного заводнения на Бобриковской нефтегазовой залежи Коробковского месторождения ожидалось увеличение коэффициента нефтеотдачи до 55% при одновременном извлечении нефти и газа. Применение барьерного заводнения и уплотнение сетки скважин по пласту Б₁Бахметьевской площади дало увеличение годовых отборов нефти до 20-30%.

Большинство нефтегазовых залежей, разрабатываемых в настоящее время, подстилаются частично или полностью подошвенными водами или оконтуриваются краевыми водами или имеет место то и другое одновременно. Рациональная разработка указанных месторождений невозможна без знания особенностей и закономерностей продвижения границ раздела газ-вода, нефть-вода и газ-нефть к несовершенным скважинам. Как показывают промышленные испытания и анализы разработки залежей с верхним газом и подошвенной водой, конусообразование является, в ряде случаев, основной причиной обводнения или загазовывания нефтяных скважин, пробуренных в литологически однородных пластах. Преждевременное обводнение или загазовывание скважин, незнание закономерностей и причин этого явления ведет к потерям большой доли промышленных запасов нефти и, таким образом, снижению нефтеотдачи пласта, увеличению сроков разработки и в конечном итоге к большим материальным затратам на извлечение нефти из пласта. Отсюда тщательное изучение процессов продвижения подошвенных вод и верхнего газа, сложного явления деформации поверхности раздела фаз в пористой среде (конусообразования), особенностей и закономерностей обводнения пластов и скважин, совместного притока жидкостей к забою скважины и изучение природных факторов, способствующих увеличению безводного и безгазового периодов эксплуатации и улучшению технологических условий разработки залежей с целью наибольшего извлечения нефти из пласта, одна из основных задач увеличения нефтеотдачи на современном этапе [13].

Большое практическое значение имеет осуществление рациональной разработки газоконденсатнонефтяных и нефтегазовых залежей с водонапорным режимом, то есть режимом, когда основной энергией, за счет которой происходит движение пластовой жидкости к забоям скважины, является энергия напора воды. Водонапорный режим характеризуется тем, что при стабилизации пластового давления весь отбор пластовой жидкости замещается поступлением воды в продуктивную часть коллектора. Происходящее при этом продвижение водонефтяного контакта (ВНК) приводит к тому, что скважины, находящиеся в водонефтяной зоне, обводняются, и добыча нефти сопровождается непрерывным ростом содержания воды. Обводнение скважин приводит к росту себестоимости нефти и ухудшению показателей разработки. Так как конус характеризует локальное продвижение поверхности вода-нефть или газ-нефть, то, рассматривая режим работы отдельной скважины, необходимо проводить различие между продвижением краевых вод и напором подошвенной воды. В первом случае продвижение воды происходит вдоль напластования, что характерно для относительно тонких продуктивных пластов, залегающих с заметным углом падения. Второй случай характерен для пластов, залегающих с малым углом наклона. Так как в природе такие крайние случаи наблюдаются редко, то условно можно выделить три типа притока нефти при водонапорном режиме:

 нефть поступает к скважинам в основном под напором подошвенной воды, краевые воды малоактивны, то есть скорость продвижения границы раздела нефть-вода превышает скорость, с которой происходит стягивание контура нефтеносности;

 вытеснение нефти происходит за счет продвижения краевых вод вдоль напластования. Подошвенная вода при этом малоактивна, то есть скорость продвижения контура водоносности в несколько раз больше скорости подъема поверхности подошвенной воды;

 приток нефти к скважинам осуществляется как за счет продвижения контурных, так и подошвенных вод, а также и за счет продвижения газонефтяного контакта (ГНК) при наличии газовой шапки.

Последний вариант наиболее сложен, хотя приближенно оценить происходящий при этом процесс можно, сведя его к одному из первых двух. Качественная сторона процесса конусообразования, то есть форма поверхности раздела вода-нефть или нефть-газ не зависит от того, является ли подошвенная вода движущим фактором или она малоактивна. Но при этом качественном подобии физические причины, вызывающие образование конуса, различны.

В случае напора подошвенной воды ввиду высокого пластового давления в водоносной области и пониженного давления на забое нефтяной скважины граница раздела испытывает значительный перепад давления. При этом линии тока будут ортогональны исходной поверхности вода-нефть и направлены вверх. Приближаясь к забою скважины, на уровне вскрытой толщины пласта они начинают отклоняться. Вытеснение нефти происходит за счет продвижения ВНК, сопровождаемого образованием конуса воды. Причина образования конусообразной формы поверхности раздела вода-нефть (нефть-газ или газ-вода) заключается в том, что величина вертикальной составляющей скорости продвижения ВНК принимает максимальное значение вдоль оси скважины. Качественно подобная форма поверхности раздела образуется и в случае, когда подошвенная вода не принимает участие в вытеснении или она малоактивна. При этом поток нефти (газа) к несовершенной скважине на расстоянии, большем одного-двух значений продуктивной толщины от ее оси (внешняя зона), можно считать плоскорадиальным, где линии тока располагаются параллельно кровле и подошве пласта.

Внутренняя зона характеризуется пространственным притоком, где линии тока искривлены. В результате такого искривления линий тока появляется вертикальная составляющая скорости фильтрации, значение которой возрастает с приближением к оси скважины. Наличие вертикальной составляющей приводит к подтягиванию поверхности раздела воданефть или газ-нефть, а ее уменьшение с увеличением расстояния от оси скважины обусловливает образование конусообразной формы границы раздела. Конус подошвенной воды или газа в данном случае может находиться в статическом равновесии и не оказывать существенного влияния на приток нефти к скважине. Равновесие характеризуется предельным дебитом или депрессией, то есть дебитом, превышение которого приводит к прорыву воды (газа) в скважину. В случае, если дебит скважины не превышает предельного значения, то прорыв воды (газа) произойдет лишь при достижении вершиной конуса интервала перфорации за счет общего поднятия ВНК или опускания ГНК вследствие истощения залежи. Величина предельного дебита зависит от физических свойств пласта и жидкостей и относительного вскрытия продуктивной части пласта. В пластах с малой проницаемостью вдоль напластования реализация предельных дебитов ввиду их малости экономически невыгодна. Экономически невыгодна эксплуатация скважин и с максимально возможным (потенциальным) дебитом, так как вода или верхний газ мгновенно прорываются в скважину и начинается совместный приток нефти и воды или нефти и газа [14].

При разработке нефтегазовых залежей (НГЗ) вскрываются газоводонефтяные зоны или нефтяные оторочки при разработке газоконденсатнонефтяных залежей (ГКНЗ) с подошвенной водой. Разработке таких залежей обусловливается следующими характерными особенностями: полной гидродинамической связью нефтяной залежи с газовой шапкой и водоносным пластом и вероятной подвижностью газонефтяного и водонефтяного контактов в окрестности скважин в процессе разработки залежи; практически неподвижностью контуров газоносности и нефтеносности в пласте; равномерным распределением пластовой энергии по площади нефтеносности; равенством начального пластового давления и давления насыщения; относительной близостью расположения к забоям скважин водонефтяного и газонефтяного контактов при дренировании нефтяной оторочки; неустойчивостью процесса вытеснения нефти газом, приводящей к быстрому прорыву газа к забоям добывающих скважин и их загазованности и в конечном счете к значительной потере пластовой энергии и снижению нефтеотдачи; возможностью проявления ретроградной конденсации из-за снижения давления в газонасыщенной зоне пласта, предопределяющей пластовые потери конденсата; трудностью регулирования перемещением ГНК и ВНК и др.

Как видим, указанные особенности требуют создания технологии разработки НГЗ и

нефтяных оторочек, совершенно отличных от технологии разработки как нефтяных залежей обычного типа, так и нефтегазовых залежей с краевой водой.

При разработке НГЗ ГКНЗ с подошвенной водой темп отбора нефти обусловливается деформацией контактов и прорывом газа и воды к забоям скважин. При этом весьма важным параметром при установлении режима работы скважин и прогнозировании технологических показателей разработки является анизотропия пласта, обоснование которой необходимо для каждой конкретной залежи. М. Маскет также указывает, что анизотропность коллектора существенно влияет на эффективность размещения скважин. Низкая проницаемость по вертикали препятствует быстрому поднятию вершины конуса и способствует выполаживанию поверхности раздела вода-нефть. Высокая проницаемость по вертикали (малая анизотропия пласта) способствует быстрому продвижению вершины конуса к забою скважины, что обусловливает концентрированную деформацию поверхности раздела вблизи скважины с низким коэффициентом охвата вытеснения нефти подошвенной водой. Поэтому М. Маскет утверждает, что критерием размещения скважин с напором подошвенной воды должен быть параметр размещения, представляющий собой отношение половины расстояния между скважинами R₀к произведению толщины продуктивного пласта h_0 и анизотропии a^* , то есть $\rho_0 = R_0 / a^* h_0$.

Эффективность вытеснения нефти, очевидно, может быть улучшена в условиях непрерывной эксплуатации скважин при малых дебитах, когда снижение забойного давления не на много превосходит напор столба жидкости $P=h_{\rm H}(\rho_{\rm B}-\rho_{\rm H})g$, а также при периодической эксплуатации скважин с продолжительными интервалами её закрытия, приводящей к опусканию и выполаживанию возникшей конусообразной поверхности раздела вода-нефть или газ-нефть под действием сил тяжести.

Методы расчёта предельных депрессий и дебитов нефти.

Модель предполагает установившийся приток нефти или газа к открытому забою скважины, частично вскрывшей однородный или однородно-анизотропный по проницаемости ограниченный горизонтальный пласт постоянной толщины, подстилающийся подошвенной водой. На контуре пласта и на забое скважины поддерживается постоянное давление, фильтрация происходит по закону Дарси, капиллярными силами пренебрегается, вытеснение нефти или газа водой предполагается поршневое. Решение для распределения потенциала в пласте, вызванного работой несовершенной скважины, принимается для условий невозмущенной границы раздела двух жидкостей, то есть первоначальный ВНК и ГНК предполагаются непроницаемыми.

При эксплуатации нефтяных или газовых скважин с подошвенной водой, а также при дренировании нефтяной оторочки в определенных условиях проявляется тенденция к деформированию поверхности раздела двух фаз, которая принимает холмообразный вид, образуя конусы воды, конусы нефти или конусы воды и газа. При некоторых установившихся условиях отбора соответствующие деформированные поверхности раздела находятся в равновесии, и не оказывают существенного влияния на приток добываемого флюида к скважине. Если же превысить депрессию и, соответственно, отбор нефти или газа сверх некоторой предельной величины, то вода прорвется в скважину, что может привести к ее прогрессирующему обводнению, а при дренировании нефтяной оторочки возможен прорыв подошвенной воды и верхнего газа. Таким образом, существует предельная высота вершины конуса, которой соответствует предельная депрессия и безводный или безгазовый дебит.

Точной теории конусообразования ввиду сложности процессов не имеется. Приближенная теория этого явления, основанная М. Маскетом и И.А. Чарнымпозволяющая рассчитывать предельные дебиты и депрессии, исходит из допущения, что отклонение поверхности раздела двух фаз от первоначальной плоской формы не влияет на распределение потенциала скорости фильтрации в нефтяной (газовой) части пласта.Дальнейшее развитие приближенной теории устойчивых конусов Маскета-Чарного и ее практическое использование нашли отражение в работах как отечественных, так и зарубежных исследователей (Б.Б. Лапук, Б.Е. Сомов, А.Л. Брудно, Д.А. Эфрос, Р.Г. Аллахвердиева, А.К. Курбанов, П.Б. Садчиков, А.П. Телков, Ю.И. Стклянин, З.С. Алиев, А.П. Власенко, Е.С. Абрамов, С.Н. Закиров, Р. Чаней, Д. Сирси и др.) Здесь изложен более универсальный метод решения задач конусообразования, основанный на двухзонной схеме притока [15].

Предельный безводный дебит нефтяной скважины определяется по формуле:

$$Q_{1} = Q_{0}g(\rho_{0}h); Q_{0} = \frac{2\pi K_{r}h_{0}^{2}g\Delta\rho}{\mu}; \Delta\rho = \rho_{B} - \rho_{r}, \quad (1)$$

где $g(\rho_0\hbar)$ — безразмерный безводный дебит, определяемый по соответствующим графикам или таблицам. Для параметра $\rho_0 \le 1$ и по графикам для $\rho_0 > 1$. Безразмерная ордината конуса $\xi_0 = z_0/h_0$ для $\rho_0 > 1$ определяется по графикам, для $\rho_0 < 1$ — по таблицам.

Для безразмерной депрессии при $\rho_0 > 1$ имеется формула:

$$\Delta P_{np} = \frac{\Delta P_{np}}{gh_0 \Delta \rho} = (\epsilon_0 + \Delta \epsilon)q(\rho_0, \hbar) \quad (2)$$

$$\sigma_{qe} \qquad \epsilon_0 = \frac{1}{\hbar} \left[\ln \frac{R_0}{r_c} - \Psi(\rho_0, \hbar) \right], \quad (3)$$

Г

 $\Psi(\rho_0, \hbar)$ – некоторая функция, определяемая по таблице. Возможно другое, наиболее полное представление для функции фильтрационных сопротивлений

$$\varepsilon_0 = \ln \frac{R_0}{r_c} + S; \quad S = C_1 + C_2 + C_0$$
(4)

где C₁, C₂ и C₀ – добавочные фильтрационные сопротивления, обусловленные различными видами несовершенства скважины и определяемые по соответствующим формулам или графическим зависимостям.

Уравнение границы раздела (профиль конуса воды или газа), описывается уравнением:

$$\check{r} = {r / R_0} = \exp f_0 \left[\frac{-0.5(1 - \xi^2)}{q(\rho_0, \hbar)} \right] (5)$$

Методика расчёта предельных безводных и безгазовых дебитов.

Схема одновременного существования газового и водяного конусов показана на рисунке 1.

Рис. 1. Схема конусов газа и воды при безнапорном притоке.

Пусть H_г, H_в и H_н есть гидравлические напоры в газовой, водяной и нефтяной зонах соответственно. P_г, P_в и P_н – пластовые давле-

ния в указанных зонах, а Р'–давление в некоторой точке на поверхности раздела газ-нефть, $\rho_{\rm H}$, $\rho_{\rm B}$ и $\rho_{\rm r}$ – плотности нефти, воды и газа соответственно. Тогда относительно точки N можно записать следующее выражение:

$$H_r = z + \frac{P_r - P'}{g\rho_r}; \quad H_H = z + \frac{P_H - P'}{g\rho_H}$$
 (6)

Если эту точку переместить на контур скважины, то в соответствии с обозначениями на схеме имеем $z = (h - b) + h_c$. Решая совместно два уравнения, исключая **P**' и пренебрегая капиллярным давлением $P_{\kappa}=P_{\mu} - P_{r}$, получаем:

Если поместить точки Nu M на контур пласта, то получаем, соответственно, выражение:

$$H_{\rm H} = \rho_{\rm r} H_{\rm r} + \Delta \rho_{\rm 1} h; \quad H_{\rm H} = \rho_{\rm B} H_{\rm B}$$
(8)
из которых следует:

 $H_r \rho_{\rm B} = H_{\rm B} \rho_{\rm B} - h \Delta \rho_1 \tag{9}$

Решая совместно (7), (8) и (9), находим нижнее положение интервала перфорации, обеспечивающее критическое значение безводного и безгазового дебита при заданном значении h_c

$$b = h_0 - (h - h_c) \frac{\Delta \rho_1}{\Delta \rho_3}; \quad \Delta \rho_3 = \rho_B - \rho_r \quad (10)$$

Определим ординату z_0 нейтральной линии тока. Уравнения для напоров (7) и (8) относительно плоскости z_0 (см. рисунок 1) записываются в виде:

 $H_{\mu} = \rho_{r}H_{r} + \Delta \rho_{1}z_{0};$ $H_{\mu} = \rho_{B}H_{B} - \Delta \rho_{2}z_{0}$ (11) Решая совместно (11) и (9), получаем:

$$z_0 = \frac{\Delta \rho_1}{\Delta \rho_3} h \qquad (12)$$

Расстояние b₁от нижних отверстий перфорации до нейтральной линии тока, как это следует из схемы, есть

$$b_1 = z_0 - (h - b) = \frac{\Delta \rho_1}{\Delta \rho_3} h_c$$
 (13)

Таким образом, определив ординату нейтральной линии тока (горизонтальную плоскость) и заменив ее непроницаемой жесткой перегородкой, формально получаем два пласта.

Дифференциальное уравнение безнапорного притока для верхнего пласта есть

$$Q_1 = \frac{2\pi\Delta\rho_1 K_r g}{\mu} rz \frac{dz}{dr}$$
(14)

Разделяя переменные и интегрируя (14) в пределах по гот r_cдо R₀и по zot z₂ доz₁, где

$$z_1 = h - z_0;$$
 $z_2 = h_c - h_c \Delta \rho_1,$ (15)

$$Q_{1} = \pi \Delta \rho_{1} K_{rg} (h^{2} - h_{c}^{2}) (1 - \Delta \rho_{1})^{2}$$
(16)
$$\mu_{\pi} ln (R_{0}/r_{c}) \Delta \rho_{3}$$

Интегрируя уравнение для нижнего пласта, получаем

 $Q_2 = \pi \Delta \rho_2 K_r gr(z_0 - z) dz \quad (17)$

в пределах по гот r_0 до R_0 и по гот $z_1=z_0$ -а до z_2 , получаем

$$Q_{2} = \frac{\pi \Delta \rho_{2} K_{rg} (h^{2} - h_{c}^{2})}{\mu_{H} \ln(R_{0}/r_{c})} \left(\frac{\Delta \rho_{1}}{\Delta \rho_{3}}\right)^{2}$$
(18)

Суммарный критический дебит Q=Q₁ + Q₂определится формулой

$$Q_{1} = \frac{\pi K_{r} (h^{2} - h_{c}^{2}) g}{\mu_{H} \ln \left(\frac{R_{0}}{r_{c}}\right)} \left[\Delta \rho_{1} \left(1 - \frac{\Delta \rho_{1}}{\Delta \rho_{3}}\right)^{2} + \Delta \rho_{2} \left(\frac{\Delta \rho_{1}}{\Delta \rho_{3}}\right)^{2} \right]$$
(19)

Здесь принимаются следующие размерности:

$$\begin{split} [K_r] &= M^2; \ [h] &= M; \ [\Delta \rho] &= \kappa r / M^3; \ [\mu] &= \frac{\kappa r \cdot c}{M^2}; \\ [Q] &= M^3 / c \; . \end{split}$$

Пример 1. Рассчитать оптимальный интервал перфорации скважины, эксплуатирующейботуобинской горизонт, положение нейтральной линии тока и предельный безводный и безгазовый дебит скважины, дренирующей нефтяную оторочку при следующих исходных данных: пласт горизонтальный однородноизотропный, æ^{*}=1; условный контур питания R₀=250 м; толщина нефтяной оторочки h=22,2м; проницаемость пласта $K_r = 1,02 \cdot 0,378 \cdot 10^{-12} M^2$; вскрытая толщина $h_c = 6,8$ м; радиус скважины r_c=0,1м; вязкость нефти $\mu_{\rm H}=6,5$ мПа·с=0,102·10⁻³·6,5 кг*с/м²; разность плотностей жидкостей $\Delta \rho_1 = 806,3 \, \mathrm{kr}/\mathrm{M}^3$, Δρ₂ = 473 кг/м³, Δρ₃ = 1279,3 кг/м³; скважина совершенная по характеру вскрытия.

Расчеты, произведенные по формулам (10), (12), (13) и (19), дают следующие результаты: b=19,96 м; z₀=15 м, b₁=4,6 м; Q=4,64 м³/сут. Следовательно, a=8,86 м и у=2,24 м.

Следует заметить, что полученный расчетный предельный дебит больше действительного предельного, так как формула (19) получена из условия «устойчивости» конусов уже при достижении ими вершин интервала перфорации. Строго говоря, устойчивость конусов при таком положении невозможна.

Расчет предельных безводных и безгазовых дебитовпо теории Курбанова-Садчикова, основанная на напорном притоке, исходя из основного допущения приближенной теории устойчивых конусов Маскета-Чарного. Отклонение поверхности двух жидкостей в пористой среде от начальной плоской формы не влияет на распределение потенциала скорости фильтрации в нефтяной зоне пласта, рассматривая нестационарное течение жидкостей как последовательную смену стационарных состояний. Область притока при этом условно разделяется на две части путем введения в поток непроницаемой горизонтальной плоскости, проходящей через середину интервала вскрытия пласта. Таким образом, получается два самостоятельных пласта с соответствующими относительными вскрытиями, в которых может быть применен любой из существующих методов расчета предельных дебитов, относительно верхнего газа и подошвенной воды.

Данный метод, основанный на искусственном разделении потока, может дать удовлетворительные результаты лишь в том случае, если в скважине действительно реализован интервал вскрытия, при котором предельное устойчивое состояние конусов газа и воды наступает одновременно, что на практике при неизменном положении интервала перфорации неосуществимо. Приняв за основу аналитическое решение М. Маскета для напорного притока к несовершенной по степени вскрытия пласта скважине, авторы разработали графический метод определения интервала вскрытия нефтяного пласта и предельных безводных и дел безгазовых дебитов.

Расчёт предельных безводных и безгазовых дебитов. В основу решения этой задачи положена приближенная теория устойчивых конусов Маскета-Чарного. В отличие от предыдущего метода здесь используется аналитическое решение задачи о притоке к несовершенной скважине в однородно - анизотропном пласте, для широкого диапазона параметра ρ_0 , в том числе и для $\rho_0 < 1$, а условное разделение нефтяного пласта производится по нейтральной линии тока. Кратко изложим суть этого метода. В работах А.П.Телкова и Ю.И.Стклянина получено точное решение для распределения потенциала ϕ (z, r, η) в однородно - анизотропном пласте с непроницаемой кровлей и подошвой, вызванного работой точечного стока интенсивностью q с координатами z=ŋ и r=0. Принимая скважину за линейный сток с постоянным удельным расходом q=Q/(b-a), потенциал несовершенной скважины, вскрывшей пласт в интервале от z=a до z=b, выразится в виде:

$$\Phi - \Phi_0 = \int_{b} q_0 \phi(z, r, \eta) d\eta \qquad (20)$$

где Φ_0 - потенциал на контуре питания R_0 .

Дифференцируя (20) по безразмерной ординате ξ =z/h приравнивая полученное выражение нулю, находим ординату ξ^* нейтральной линии тока. Вычисленные значения безразмерной ординаты нейтральной линии тока ξ^* =d/h как функции параметров α =a/h и β =b/h приведены в табл. 2.

Таблица 2

Расчетные значения ординаты нейтральной линии тока *ξ**

		β								
(χ	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	
0,	,1	0,15	0,18	0,23	0,27	0,32	0,37	0,33	0,50	
0,	,2	-	0,25	0,29	0,34	0,38	0,44	0,50	0,57	
0,	,3	-	-	0,35	0,40	0,45	0,50	0,55	0,60	
0,	,4	-	-	-	0,45	0,50	0,55	0,62	0,68	

Найдя ординату нейтральной линии тока ξ^* , по известным методикам можно рассчитать предельный безводный (для нижней части пласта) и предельный безгазовый (для верхней части пласта) дебиты, а затем предельную депрессию. Наименьший дебит из расчетных принимается как предельный безводный и безгазовый дебит скважины. В соответствии с формулой (1) для удельного расхода $q_0 = Q/hT_h$ по верхней и нижней частям пласта можно записать следующие соотношения:

$$q_{01} = \frac{q_1(\rho_{01}, F_1)}{F_1} \epsilon h_1 \Delta \rho_1; q_{02} = \frac{q_2(\rho_{02}, F_2)}{F_2} \epsilon h_2 \Delta \rho_2; \quad (21)$$

где

$$\begin{split} \mathbf{T}_{1} &= \frac{\xi * -\alpha}{\xi *}; \quad \mathbf{T}_{2} &= \frac{\beta - \xi *}{1 - \xi *}; \quad \mathbf{h}_{1} = \mathsf{d}; \; \mathbf{h}_{1} = \mathsf{d}; \; (22) \\ \rho_{01} &= \frac{\rho_{0}}{\xi *}; \; \rho_{02} = \frac{\rho_{0}}{1 - \xi *}; \; \xi * = \frac{\mathsf{d}}{\mathsf{h}}; \; \varepsilon = \frac{g2\pi K_{\mathsf{r}}}{\mu_{\mathsf{H}}}. \end{split}$$

С учетом (22) формулы (21) принимают следующий вид:

$$q_{01} = \frac{\overline{q_1}(\alpha, \beta, \rho_0)\xi^{*2}}{\xi^{*} - \alpha} \epsilon h \Delta \rho_1; q_{02} = \frac{\overline{q_2}(\alpha, \beta, \rho_0)\xi^{*2}}{\xi^{*} - \alpha} \epsilon h \Delta \rho_2; (23)$$

Чтобы дебит был одновременно безводным и безгазовым, необходимо выбрать наименьший расход, т.е. принять $q_0 = \min\{q_{01}, q_{02}\}$. Тогда предельный расход нефти через скважину будет

 $Q = q_0(b - a) = q_0(\beta - \alpha)h;$ (24)

Очевидно, этот дебит в общем случае является предельным либо для конуса воды (и меньше предельного для конуса газа), либо для конуса газа (и меньше предельного для конуса воды). Выражения в правых частях формул (23) представляют собой соответственно безразмерные предельные безгазовые и безводные плотности расходов.

$$q_{1} = \overline{q_{1}}(\alpha, \beta, \rho_{0}) \frac{\xi^{*2}}{\xi^{*} - \alpha} = \overline{q} \frac{(\xi^{*} - \alpha, \rho_{0})}{\xi^{*}} \cdot \frac{\xi^{*2}}{\xi^{*} - \alpha}, \quad (25)$$

$$q_{2} = \overline{q_{2}}(\alpha, \beta, \rho_{0}) \frac{(1 - \xi^{*})^{2}}{(1 - \xi^{*})^{2}} = \overline{q} \frac{(\beta - \xi^{*}, \rho_{0})}{(1 - \xi^{*})^{2}} \cdot \frac{(1 - \xi^{*})^{2}}{(1 - \xi^{*})^{2}}, \quad (26)$$

 $q_2 = \overline{q_2}(\alpha, \beta, \rho_0) \frac{C}{\beta - \xi_*} = \overline{q} \frac{\alpha}{1 - \xi_*} \frac{C}{1 - \xi_*} \frac{C}{\beta - \xi_*},$ (26) С учетом (25) и (26) формулы (23) принимают вид:

 $q_{01} = q_1 \Delta \rho_1 \epsilon h; q_{02} = q_2 \Delta \rho_2 \epsilon h,$ (27)

Для каждой пары значений α и β и соответствующих им значений ординат нейтральной линии тока (см. табл. 2.) по формулам (22) подсчитаны величины относительных вскрытий \mathbf{h}_1 , \mathbf{h}_2 в зависимости от параметров α и β и значения параметров ρ_{01} ρ_{02} . Затем, для предельных дебитов определялись $q_1(\alpha, \beta, \rho_0)$ и q₁ (α, β, ρ₀), а затем по формулам (25), (26) рассчитывались плотности расходов q1 и q2. При конкретных расчетах предельных безводных и безгазовых дебитов поступают следующим образом. По известным параметрам α, β и ρ₀ из таблицы или графиков находят плотности расходов q₁и q₂, затем по формулам (27) подсчитывают удельные расходы q₀₁и q₀₂ из которых выбирают наименьшее значение $q_0 = \min\{q_{01}; q_{02}\}$, и по формуле (24) подсчитывают искомый предельный дебит. Покажем применение метода на конкретных примерах.

Пример 2. Имеется подгазовая нефтяная залежь, подстилающаяся подошвенной водой. Исходные параметры: $R_0=250$ м; h=22,2m; $\Delta \rho_1 = 806,3 \ {\rm kr/m^3}$; $\Delta \rho_2 = 473 \ {\rm kr/m^2}$ (в пластовых условиях); $\mu_{\rm H}=6,5m\Pi {\rm a}\cdot {\rm c}$; $K_{\rm r}=0,378\cdot 1,02\cdot 10^{-12} {\rm m^2}$; $ae^*=12$. Требуется определить одновременно безводный и безгазовый дебит при безразмерных параметрах вскрытия: $\alpha=0,2$; $\beta=0,7$ и $\alpha=0,2$; $\beta=0,5$.

1. Определяем значение $\rho_0 = \frac{R_0}{m+h} = 0.94$.

2. Из таблицы (см. Прил. 3) находим плотности q₁=0,249 и q₂=0,125 при α=0,2 и β=0,7.

3. По формулам (27) находим удельные расходы:

 $\begin{array}{l} q_{01} = 0,249 \cdot 806, 3\epsilon h = 200, 8\epsilon h; \\ q_{02} = 0,125 \cdot 473\epsilon h = 59\epsilon h; \end{array}$

4. Так как $q_{02} < q_{01}$,то выбираем q_{02} . По формуле (24) определяем Q=4,5 m^3 /сут.

5. При α =0,2 и β =0,5 находим плотности q_1 =0,144 и q_2 =0,796.

6. Удельные расходы составят соответственно:

 $\begin{array}{l} q_{01} = 0,144 \cdot 806, 3\epsilon h = 116, 1\epsilon h; \\ q_{02} = 0,796 \cdot 473\epsilon h = 376, 5\epsilon h \end{array}$

7. В этом случае $q_{01} < q_{02}$. Выбираем q_{01} . Тогда расход в пластовых условиях, подсчитанный по формуле (24), составит $Q \approx 5.32 \text{ м}^3/сут.$ Как видим, в этом случае предельный дебит оказался в 1,2 раза больше предыдущего. Таким образом, наибольший предельный дебит зависит от положения интервала вскрытия.

Пример 3. Исходные параметры принимаются для примера 1, интервал вскрытия, в котором определяемый ординатами b=19,96 м и a=8,86 м, соответствует безразмерным ординатам: $\beta=b/h=19,96/22,2\approx0,9$ и $\alpha=a/h=8,86/22,2\approx0,4$.

 Параметрыα ≈ 0,4; β ≈ 0,9,ρ₀ =250/22,2= рыа ≈ 0,4; β ≈ 0,9,ρ₀ =250/22,2=11 при æ*=1 определяем плотности q₁ ≈ 0,036 и q₂ ≈0,380.

2. По формулам (27) находим удельные расходы:

$$\begin{array}{l} q_{01} = 0,036*806,3\epsilon h = 29\epsilon h; \\ q_{02} = 0,380*473\epsilon h = 179,7\epsilon h. \end{array}$$

3. Выбираем наименьшую плотностьq₀₁. По формуле (24) находим предельный дебит $Q \approx 1,33 \text{ м}^3$ /сут. Сравнивая его значение с дебитом Q=4,64 м³/сут, рассчитанным по приближенной методике (см. пример 1), видим, что последний завышает в данном конкретном примере предельный дебит в 3,5 раза.

4. Для сравнения произведем расчет предельного дебита при тех же исходных данных по методике Курбанова-Садчикова, для чего пересчитаем параметры. Получаем: $\gamma = \Delta \rho_1 / \Delta \rho_2 = 806, 3/473 = 1,7$; $h = h_c / h = 6, 8/22, 2 = 0,3$; $R = R_0 / \alpha * h = 250/1 * 22, 2 = 11$.

Предельный дебит составляет:

$$\mathbf{Q} = \frac{\mathbf{K}_{\mathbf{r}} \Delta \rho_2 \mathbf{h}^2}{\mu_{\mathbf{H}}} \mathbf{q} = 5,5 \text{ m}^3/\text{cyr.}$$

Завышение предельного дебита по сравнению с расчетным, учитывающим нейтральную линию тока, в данном случае составляет 4 раза. Метод Курбанова-Садчикова и предлагаемый уточненный метод решения задачи конусообразования имеют следующие преимущества перед потенциометрическим и другими существующими методами: они универсальны, т.е. расчетные зависимости представлены в безразмерном виде и применимы как для однородных, так и для однородно-анизотропных пластов; графические решения даны в широдиапазоне безразмерных параметров ком вскрытия (α , β) и радиуса контура питания (R_0) и охватывают все практически интересные случаи; технически удобны и просты, не требуют сложной вычислительной техники.

Методика расчета предельной депрессии.

При вскрытии нефтяной оторочки в интервале (b-a) средние значения потенциала (давления) для каждой части пласта будут равными. Вдоль всей вскрытой продуктивной толщи среднее значение потенциала можно определить по формуле:

$$\Phi_0 - \overline{\Phi}_c = \frac{(\Phi_0 - \overline{\Phi}_{c1})(d - a) + (\Phi_0 - \overline{\Phi}_{c2})(b - d)}{b - a}, \quad (28)$$

где $\Phi_0 - \bar{\Phi}_{c2}$ – среднее значение потенциалов вдоль скважины по вскрытым толщинам (d-a) и (b-d) соответственно. В безразмерных параметрах формула (28) представляется в виде:

$$\Phi_0 - \overline{\Phi}_c = \frac{(\Phi_0 - \overline{\Phi}_{c1})(\xi * - \alpha) + (\Phi_0 - \overline{\Phi}_{c2})(\beta - \xi *)}{\beta - \alpha}, \quad (29)$$

Выразим разность потенциалов для каждой из части пласта, принимая в качестве расхода предельные дебиты:

 $Q_1 = h_1 T_1 q_0; \quad Q_2 = h_2 T_2 q_0, \quad (30)$

Где в соответствии с формулами (27) имеем

 $q_0 = \epsilon hmin \{q_1 \Delta \rho_1; q_2 \Delta \rho_2\}, \qquad (31)$

Здесь q_1 и q_2 – безразмерные плотности расхода, рассчитанные по формулам (25) и (26).

$$\Phi_{0} - \overline{\Phi}_{c1} = \frac{q_{0}}{2\pi} \left[\ln \frac{R_{0}}{r_{c}} - \Psi(\rho_{1}, T_{1}) \right], \quad (32)$$

$$\Phi_{0} - \overline{\Phi}_{c2} = \frac{q_{0}}{2\pi} \left[\ln \frac{R_{0}}{r_{c}} - \Psi(\rho_{2}, T_{2}) \right], \quad (33)$$

Внося (32) и (33) в формулу (29), переходя к давлению и учитывая (31), получаем формулу для предельной депрессии $\Delta P_{np} = P_0 - P_c$ в следующем виде:

$$\begin{split} \Delta P_{np} &= \min\{q_1 \Delta \rho_1; q_2, \Delta \rho_2\} \bigg[\ln \breve{R} - \frac{(\xi * - \alpha)}{\beta - \alpha} \Psi(\rho_1, T_1) - \frac{(\beta - \xi *)}{\beta - \alpha} \Psi(\rho_2, T_2) \bigg], \\ & \underbrace{(34)} \end{split}$$

 $\mathbf{\check{R}} = \mathbf{R}/\mathbf{r_c}$

где T_1 , T_2 , ρ_1 , ρ_2 подсчитываются по формуле (22).

Пример 4. Рассчитать предельную депрессию для исходных данных Примера 2 при параметрах вскрытия $\alpha=0,2$ и $\beta=0,5$.

1. По табл.2 определяем ординату нейтральной линии тока:

 $\xi * (\alpha, \beta) = \xi * (0,2;0,5) = 0,34$

2. По формулам (22) находим: ρ_{01} =2; ρ_{02} =1 и T_1 =0,41 и T_2 =0,24.

3. Определяем значение функции: Ψ(ρ₁, ħ₁)=Ψ(2;0,41)=1,24;

 $\Psi(\rho_2, h_2) = \Psi(1; 0, 24) = 1, 20.$

4. Так как (q₀₁)min=116,1ɛh (см. пример 2), следовательно, (q₁,**Δ**ρ₁)_{min}=116,1.

5. Подсчитываем ΔР_{пр} по формуле (34):
 ΔР_{пр} ≈0,18 МПа.

Предельная депрессия может быть подсчитана более точно, если учесть добавочные фильтрационные сопротивления, обусловленные не только частичным вскрытием C_1 , но и нарушением линейного закона C_2 и перфорацией колонны C_0 . Тогда, определяя разность потенциалов по формулам (32) и (33) с учетом (4) и (22) для каждой части пласта и внося их выражения в формулу (2.29), после ряда преобразований получаем:

$$\Delta P_{\pi p} = \frac{\min\{q_{1}\Delta\rho_{1}; q_{2}\Delta\rho_{2}\}}{\beta - \alpha} \left[\frac{(\xi * -\alpha)^{2}}{\xi *} (\ln \breve{R} + S_{1}) + \frac{(\beta - \xi *)^{2}}{\xi *} (\ln \breve{R} + S_{2}) \right]$$
(35)

$$\Gamma_{A}e$$

$$S_{1}=C_{1}(\rho_{01}, \breve{R}_{1})+C_{2}(\rho_{01}, \breve{R}_{2})+C_{01}$$

$$S_{2}=C_{1}(\rho_{02}, \breve{R}_{2})+C_{2}(\rho_{02}, \breve{R}_{2})+C_{02}; \quad (36)$$

$$C_{1}(\rho_{01}, \breve{R}_{1}) = \frac{\alpha}{\xi * -\alpha} \left[\ln \breve{R} - \frac{\xi *}{\alpha} \Psi(\rho_{01}, \breve{R}_{1})\right];$$

$$1 - \beta \Gamma \qquad 1 - \xi *$$

$$C_{1}(\rho_{02}, \mathbb{F}_{2}) = \frac{1-\beta}{\beta-\xi*} \Big[\ln \breve{R} - \frac{1-\xi*}{1-\beta} \Psi(\rho_{02}, \mathbb{F}_{2}) \Big];$$

С₁,С₂,С₀- добавочные фильтрационные сопротивления в формулах (36).

Пример 5. Применяются исходные данные Примера 6. Добавочные данные: фильтрация происходит по закону Дарси ($C_2=0$); скважина перфорирована с плотностью m=3отв/пог.м, глубина пулевого канала $l_0=0,3456$ м, диаметр пулевого канала 2r=0,0127м. Требуется определить предельную депрессию.

1. По формулам (37) находим: $C_1(\rho_{02}, F_2) \approx 7,84; C_1(\rho_{01}, F_2) \approx 18,13$

2. Определяем: С₀₁=60,07; С₀₂=6,00.

3. По формуле (36) находим: S₁=67,91; (\$<u>4</u>)=24,13.

4. По формуле (35) имеем **ΔР**_{пр}=0,653МПа.

Как видим, предельная депрессия с учетом добавочных фильтрационных сопротивлений, обусловленных перфорацией, оказалась больше в 0,653/0,225 \approx 3 раза. Следует заметить, что при известных условиях (большой диаметр пулевых каналов, большая глубина проникновения и оп- оптимальная плотность перфорации) значения C₀₁ и C₀₂ могут оказаться отрицательными, что повлечет к уменьшению расчетных значений ΔP_{mp} .

Методика расчета предельного безводного и безгазовогодебиа и предельной депрессии при разработке нефтяной оторочки

1. Принимаются исходные параметры:

- условный радиус контура питания R₀, м;

– нефтенасыщенная толщина h, м;

– плотности нефти, газа и воды в пластовых условиях $\rho_{\rm H}, \rho_{\Gamma}, \rho_{B}, \kappa\Gamma/M^{3};$

– вязкость нефти в пластовых условиях $\mu_{\scriptscriptstyle H},$ Па*с;

– горизонтальная проницаемость пласта

К_r,м²;

- анизотропия пласта æ*;

- радиус скважины r_c, м;

- интервал вскрытия нефтенасыщенного безразмерныхпараметрах: пласта В $\alpha = a/h;$ $\beta = b/h;$

плотность перфорации m, отв/пог.м;

- глубина пулевого канала l₀, м;

- радиус пулевого канала r₀, м.

2. Определяем параметр размещения скважин по формуле $\rho_0 = R_0/a^*h$.

3. При заданных параметрах α,β И ρ₀находим плотности расходов q₁и q₂.

4. По формулам (27) при исходных параметрах $\Delta \rho_1 = \rho_{\mu} - \rho_{\mu} u \Delta \rho_1 = \rho_{\mu} - \rho_{\mu} подсчитыва$ ем удельные расходы q₀₁ и q₀₂.

5. Принимая $q_0 = \min\{q_{01}, q_{02}\}$, по формуле (24) определяем одно- временно безводный и безгазовый дебит скважины Q.

6. По исходным параметрама и виз табл. 2 определяем ординату нейтральной линии тоκaξ*(α,β).

7. По формулам (22) определяем безразмерные параметры h_1 , h_2 , ρ_{01} и ρ_{02} .

8. Определяем значение функций $\Psi(\rho_{01},$ \mathbf{T}_1) и $\Psi(\rho_{02}, \mathbf{T}_2)$.

9. По формулам (37) подсчитываем добавочные фильтрационные сопротивления С₁(ρ_1 , \mathbf{T}_1) и $\mathbf{C}_2(\rho_2, \mathbf{T}_2)$.

10. Фильтрационные сопротивления С₀₁ и

$$\begin{split} C_{02} & \text{подсчитываем по формуле:} \\ C_0 &= \frac{1}{T_{\text{h}}} \Big[\ln \frac{4r_c}{l_0} - \frac{\varpi *}{ml_0} \ln 2\pi r_0 m \Big], \end{split}$$
(37)

11. При линейном законе фильтрации С₂=0. По формулам (36) подсчитываем суммарные добавочные сопротивления S₁ и S₂.

12. Предельную депрессию ΔРт определяем по формуле (35).

В последние годы все больший удельный вес составляет добыча нефти из нефтегазовых нефтегазоконденсатных месторождений. Нефтегазовые залежи характеризуются сложным геологическим строением, обширными подгазовыми зонами с небольшой нефтенасыщенной толщей, высокой неоднородностью залегания углеводородов по площади залежи. Специфика и основные сложности разработки залежей определяются условиями совместного залегания в пласте нефти и газа, отсутствием надежных глинистых разделов на уровне газонефтяного контакта (ГНК) и водонефтяного

контакта (ВНК). Что в свою очередь обуславливает такое наиболее типичные осложнения как прорыв газа из газовой шапки в скважины, эксплуатирующие нефтяной пласт, либо внедрение нефти в газонасыщенную часть пласта, что приводит к нежелательному увеличению газового фактора и потери нефти в виде мертвого остатка в пласте.

Условия залегания углеводородов неблагоприятны для эффективной выработки запасов нефти данных месторождений в виду отсутствия надежных глинистых разделов на уровне газонефтяного контакта на значительной части площади. Перечисленные выше геологические особенности, сопровождающие разработку нефтегазовых месторождений, ставят задачу ограничения прорыва верхнего газа в скважины, эксплуатирующие нефтяной пласт нефтегазовых месторождений. Отсутствие отечественного и зарубежного опыта проведении работ в области ограничений газопритоков в условиях нефтегазовых месторождений с обширной подгазовой зоной и малой частью нефтенасыщенной толщины определила актуальность проблемы и послужила основой для изучения методов ограничения газопритоков в условиях разработки нефтегазовых месторожлений.

В настоящее время известны малочисленные литературные источники, касающиеся проблемы изоляции газопритоков в скважинах, эксплуатирующие нефтегазовые залежи. В основном это авторские свидетельства и патенты, в которых предлагается то или иное решение задачи, но не содержится данных о промысловых испытаниях методов. Все это существенно затрудняет сравнительное проведение анализа и систематизацию известных методов изоляции газопритоков. Ниже представлена попытка систематизации известных методов изоляции газопритоков в добывающих скважинах. Методы изоляции газопритоков в нефтедобывающие скважины можно разбить на три группы:

1. Изоляция газопритоков в скважинах, вскрывших газонефтяную залежь в контактной зоне. Связано это с тем, что прорыв газа к забою в таких скважинах является массовым и практически неизбежным осложнением, существенно затрудняющим, а зачастую и исключающим, возможность эксплуатации упомянутых выше скважин.

2. Ликвидация заколонныхперетоков газа в

скважинах, где нефтяная и газовая зоны разделены непроницаемой перемычкой. Это относительно простой и менее распространенный вид осложнений. Связан он, в основном, с некачественным разобщением пластов на стадии строительства скважин, либо с превышением допустимых депрессий при освоении и эксплуатации скважин.

3. Методы предупреждения газопроявлений, применяемых на стадии строительства скважин и связанных, в основном, с предупреждением заколонныхперетоков газа.

Анализируя методы изоляции газопритоков, можно классифицировать их по типу используемого изолирующего материала. В простейшем случае в качестве изолирующего материала применяют воду. Искусственный экран предлагается создавать путем получения кристаллогидратов в газовом пласте. С этой целью в пласт закачивают воду в количестве не менее двух объемов экрана или на глубину изоляции пласта после чего, создавая депрессию на пласт, добиваются гидратообразования в газовом пласте. При всей привлекательности метода, определяемой простотой технологии и дешевизной изолирующего материала, данный метод не нашел практического применения, поскольку продолжительность эффекта очень мала и не превышает 1-2 месяцев, а в большинстве случаев прорыв газа наблюдается уже при освоении скважины после закачки воды. Для создания изолирующего экрана в газовой части пласта можно закачивать водный раствор хлоридов щелочных и щелочноземельных металлов. После этого в газонасыщенной зоне давление снижают до давления испарения водяной фазы, при котором соли выпадают в осадок и образуют изолирующий экран. Перед изоляцией газонасыщенной зоны от нефтенасыщенной осуществляют предварительный прогрев призабойной зоны нагнетательных скважин закачкой в них пара.

В других случаях, в газовую часть нефтегазового пласта рекомендуют закачивать нефть, водный раствор поверхностно - активного вещества (ПАВ), либо углеводородного конденсата и водного раствора ПАВ. Причем в последнем случае закачку углеводородного конденсата и водного раствора ПАВ в газовую часть производят периодически через спецотверстия, распределенные по логарифмическому закону с увеличением плотности перфорации при приближении к зоне ГНК.

Селективные методы изоляции газопритоковв основном, предусматривают применение асфальтосмолистых веществ, а в качестве растворителей АСВ используют пластовую нефть, ароматические углеводороды, четыреххлористый углерод. Концентрация АСВ может составлять приблизительно 23%. В другом случае в пласт закачивают 10% раствор АСВ с вязкостью 100 сПз и пентан при соотношении от 1:1 до 1:5. В раствор вводятся малтены (нефтепродукты, входящие в состав битумов), являющиеся пентизаторамиасфальтенов. При этом при смешении растворов АСВ с пентаном происходит выпадение асфальтенов. В качестве дисперсионной среды может быть использована смесь нефтяных фракций: 10%-ных фракции с температурой кипения 200°С и 90% с температурой кипения 380°С. Раствор асфальтенов имеет вязкость приблизительно 100*сПз. Вслед за раствором асфальтенов в пласт предлагается закачивать ацетон, в количестве 20% от объёма раствора АСВ. Для предупреждения образования газового конуса на уровне ГНК закачиваются сжиженные углеводородные газы на глубину до 6 метров, а затем на такую же глубину - пластовая нефть, загущенная добавкой от 0,01 до 0,5% нефтерастворимых веществ (полутвердый полиэтилен). Закачка может осуществляться с помощью пакера. В случае необходимости верхняя часть пласта перфорируется дополнительно. После обработки скважина вступает в эксплуатацию с одновременной закачкой вязкой нефти в верхнею часть пласта для предупреждения образования конуca.

Для предотвращения конусообразования газа при эксплуатации нефтегазовой залежи, а также для предотвращения неуправляемой миграции нефти в газовую шапку предлагается способ разделения этих флюидов в пласте. Способ основан на создании изолирующего экрана из отложений серы на границе нефтьгаз. Для реализации способа на уровне ГНК устанавливается пакер, а над и под пакером простреливаются спецотверстия. Черезза трубное пространство закачивают раствор серного ангидрида в газолине или изопропиловом спирте, а через насосно-компрессорные трубы (НКТ) закачивают нефть для обеспечения равномерного распределения раствора по пласту. Расход раствора ангидрида при этом составляет от 8 до80 м³ на 0,3 м интервала перфорации.

Для предотвращения прорыва газа вокруг ствола скважины несколько ниже ГНК рекомендуется устанавливать непроницаемый экран. Для этого в обсадной колонне на уровне установки экрана прорезается кольцевой вырез, пласт вскрывается и проводится гидроразрыв пласта, с помощью которого создают горизонтальную трещину. В трещину с жидкостью носителем вводится измельченный пластический материал – синтетический каучук (акриловый, неопреновый, полиэфирный) или синтетические пластмассы (поливинилхлорид, поливинилацетат, ацетат целлюлозы, полиолефины) в количестве, для образования в трещине монослоя. Размер частиц пластического материала 0,2-0,8 мм, а его содержание в жидкости носителе составляет от 0,25 до 1,2 кг/л. Затем давление снимается, трещина смыкается, а полимер под действием горного давления и пластовой температуры деформируется и образует непрерывный непроницаемый экран. Обсадная колонна после этого перфорируется ниже экрана, и скважина осваивается.

Аналогичным образом изолирующий экран на уровне ГНК устанавливают после получения горизонтальной трещины в пласте с помощью гидроразрыва. Крепление трещины предлагается производить специальными композициями. Например, нагнетанием нерастворимого в нефти и газе материала, закупоривающего поры прилегающей к трещине горной породы, а саму трещину заполняют цементным раствором. После твердения цементный раствор вместе с отработанными породами в стенках трещины образуют горизонтальный барьер с низкой проницаемостью.

Для уменьшения отбора газа и увеличения отбора нефти предлагается методика, которая предполагает в добывающей скважине до начала отбора флюидов снизить проницаемость коллектора в газонасыщенной части пласта путем закачки в него изолирующего материала. При этом, авторами методики не приводится конкретных рекомендации по выбору изолирующего материала и технологии его закачки, а лишь отмечается, что закачки изолирующего материала производят через спецотверстия, вскрытые перфорацией выше ГНК, а радиус зоны пониженной проницаемости в газонасыщенной части пласта задают, исходя из максимального наружного радиуса депрессионной воронки в нефтяной зоне пласта при эксплуатации скважин.

Таким образом, основной вывод, который можно сделать, заключается в том, что промысловая практика в настоящее время не располагает надежными и эффективными техническим решениями, обеспечивающими изоляцию прорыва газа в скважины, эксплуатирующих нефтегазовые и нефтегазоконденсатные залежи. Рассмотренные выше методы изоляции газопритоков либо малоэффективны, например, в случае закачки в пласт воды, водных растворов ПАВ и солей, растворов асфальтосмолистых веществ, пенообразующих агентов, либо связаны с применением дефицитных и очень агрессивных реагентов.

Особый интерес могли бы представить методы, основанные на создании в пласте на уровне раздела протяженного радиального изолирующего экрана. Однако, такие методы очень трудоемки и дорогостоящие, т.к. требуют предварительного выполнения в скважине комплекса сложных работ, включающих: создания спецотверстий, спуск пакетирующих устройств, проведение массированного гидроразрыва пласта для получения горизонтальной трещины в заданном интервале пласта. Только после этого производится закачка в трещину изолирующих материалов.

Таким образом, по результатам анализа проведенных исследований по выявлению причин и характера обводнения скважин наместорождении было установлено следующее:

1. Большое значение необходимо уделять эффективной технике поинтервальной изоляции водопритоков с использованием специальных технических средств (внутрискважинных пакеров, гибких труб и т.п.) и тампонажных материалов с необходимыми свойствами. Требуется разработка установки внутрискважинных пакеров в горизонтальном участке ствола для осуществления ремонтных работ.

2. Большинство скважин с горизонтальным стволом Федоровского месторождения являются проблемными в основном вследствие притока воды. Начальная обводненность их достигает 50-60%. Наиболее представительную группу составляют скважины со снижающимися дебитами жидкости и нефти и растущей обводненностью продукции. Количество скважин, осложненных притоком воды и с тенденцией роста обводненности, составляет более 74%. 3. Образование призматических гребней воды или прорывы нагнетаемых вод могут происходить уже при запуске скважин в эксплуатацию.

4. На содержание воды в добываемой продукции оказывает влияние ориентация горизонтальной части ствола в продуктивном пласте по отношению в ВНК или ГНК. С меньшей обводнённостью работают скважины, ориентированные ближе к ГНК.

Литература / References:

- Алиев З.С., Мараков Д.А. Влияние переходной зоны на достоверность запасов газа и на производительность скважин. *Нефть и газ: опыт и инновации*. 2017; 1: 22-40. [Aliev Z.S., Marakov D.A. The effect of the transition zone on the reliability of gas reserves and on well productivity. *Oil* and.gas: experience and innovation. 2017; 1: 22-40.] (In Russ)
- Ваганов Е.В., Савастьин М.Ю., Жуматов М.О., Томская В.Ф. и др. Анализ мероприятий по ограничению водопритоков на скважинах, эксплуатирующих газоконденсатные залежи. *Академический журнал Западной Сибири*. 2019; 6 (83): 45-46. [Vaganov EV, SevastinM.Yu., Zhumatov M.O., Tomskaya V.F., Shupletsov S.S. Analysis of measures to limit water inflows in wells operating gas condensate deposits. *Academic Journal of Western Siberia*. 2019; 6 (83): 45-46.] (In Russ)
- 3. Томская В.Ф., Инякин В.В., Томский К.О., Краснов И.И. Особенности выработки запасов нефти на месторождениях Республики Саха (Якутии). Сборник: Состояние, тенденции и проблемы развития нефтегазового потенциала Западной Сибири. 2018: 79-86. [Tomskaya V.F., Inyakin V.V., Tomsky K.O., Krasnov I.I. Features of the development of oil reserves in the fields of the Republic of Sakha (Yakutia). Collection: Status, trends and problems of development of the oil and gas potential of Western Siberia. 2018: 79-86.] (In Russ)
- Инякина Е.И., Томская В.Ф., Шавалеева А.А., Варламов В.В. Оценка эффективности разработки нефтегазовых залежей Среднеботуобинского месторождения. Научный форум. Сибирь. 2018; 1: 26-27. [Inyakina E.I., Tomskaya V.F., Shavaleeva A.A., Varlamov V.V. Evaluation of the effectiveness of the development of oil and gas deposits of the Srednebotuobinsky field. Scientific forum. Siberia. 2018; 1: 26-27.] (In Russ)
- Иванова М.С., Инякина Е.И., Краснов И.И., Инякин В.В. Влияние горно-геологических условий на отработку запасов углеводородов. Горный журнал. 2019; 2: 10-12. [Ivanova M.S., Inyakina E.I., Krasnov II, Inyakin V.V. The influence of geological conditions on the development of hydrocarbon reserves. Mountain Journal. 2019; 2: 10-12.] (In Russ)
- Инякина Е.И., Краснов И.И., Инякин В.В. Опыт разработки нефтегазоконденсатных месторождений с осложненной геолого-физической характеристикой. *Нефть и газ: опыт и* инновации. 2017; 1: 41-56. [Inyakina E.I., Krasnov I.I., Inyakin V.V. Experience in the development of oil and gas condensate fields with complicated geological and physical characteristics. *Oil and gas: experience and innovation*. 2017; 1: 41-56.] (In Russ)
- Островская Т.Д., Инякина Е.И., Краснов И.И. Влияние воды на извлечение углеводородов из пласта при разработке газоконденсатного месторождения. *Научный форум. Сибирь.* 2018; 2: 5-7. [Ostrovskaya T.D., Inyakina E.I., Krasnov I.I. The effect of water on the extraction of hydrocarbons from the reservoir during the development of a gas condensate field. *Scientific forum. Siberia.* 2018; 2: 5-7.] (In Russ)
- 8. Краснова Т.Л., Телков А.П. Расчет безводного периода работы несовершенной скважины и нефтеотдачи по

удельному объему дренирования. *Нефтепромысловое дело.* 1997; 8-9: 8-11. [Krasnova T.L., Telkov A.P. Calculation of the anhydrous period of operation of an imperfect well and oil recovery by the specific volume of drainage // Oilfield business. 1997; 8-9: 8-11.] (In Russ)

- Иноземцева А.А., Инякин В.В., Краснов И.И. и др. Мероприятия по увеличению производительности скважин и ограничению притока пластовых вод. Материалы всероссийской конференции. 2015: 90-94. [Inozemtseva А.А., Inyakin V.V., Krasnov I.I. and others. Measures to increase well productivity and limit inflow of formation water. Materials of the All-Russian Conference. 2015; 90-94.] (In Russ)
- 10. Томская Л.А., Краснов И.И., Д.А. Мараков, И.С. Томский, В.В. Инякин. Изоляционные технологии ограничения газопритоков в нефтяных скважинах месторождений Западной Сибири. Вестник Северо-Восточного Федерального Университета им. М.К. Аммосова. 2016; 4 (60): 53-63. [Tomskaya L.A., Krasnov I.I., D.A. Marakov, I.S. Tomsky, V.V. Inyakin. Insulation technologies for restricting gas inflows in oil wells of Western Siberia deposits. Bulletin of the North-Eastern Federal University named after M.K. Ammosov. 2016; 4 (60): 53-63.] (In Russ)
- 11. Инякин В.В., Иноземцева А.А., Краснов И.И. и др. Современные технологии повышения производительности скважин, эксплуатирующие газовые и газоконденсатные залежи. В сборнике: Техника и технология строительства и ремонта нефтяных и газовых скважин. 2015: 158-163. [Inyakin V.V., Inozemtseva A.A., Krasnov I.I. and others. Modern technologies for increasing the productivity of wells operating gas and gas condensate deposits. In the collection: Technique and technology for the construction and repair of oil and gas wells. 2015: 158-163.] (In Russ)
- 12. Краснов И.И., Ваганов Е.В., Инякина Е.И., Катанова Р.К., Томская В.Ф. Диагностика источников водопритока и песпективы технологий ограничения прорыва воды в скважины. *Нефть и газ: опыт и инновации.* 2019; 1: 20-34. [Krasnov I.I., Vaganov E.V., Inyakina E.I., Katanova R.K., Tomskaya V.F. Diagnostics of water inflow sources and the prospects of technologies for limiting water breakthrough into wells. *Oil and gas: experience and innovations.* 2019; 1: 20-34.] (In Russ)
- Томская В.Ф., Александрова Е.М., Краснов И.И., Катанова Р.К. Обоснование режимов и условий эксплуатации скважин на Среднеботуобинском месторождении. Научный форум. Сибирь. 2019; 1: 11-12. [Tomskaya V.F., Aleksandrova E.M., Krasnov I.I., Katanova R.K. Substantiation of well operation conditions and conditions at the Srednebotuobinsky field. Scientific forum. Siberia. 2019; 1: 11-12.] (In Russ)
- 14. Краснов И.И., Томская В.Ф., Инякина Е.И., Томский К.О., Иванова М.С., Катанова Р.К. Ограничение газопритоков в условиях разработки ботуобинского горизонта. Известия высших учебных заведений. Нефть и газ. 2019; 6: 159-166. [Krasnov I.I., Tomskaya V.F., Inyakina E.I., Tomsky K.O., Ivanova M.S., Katanova R.K. The restriction of gas inflows in the development of the Botuobinsky horizon. Proceedings of higher educational institutions. Oil and gas. 2019; 6: 159-166.] (In Russ)
- 15. Томская В.Ф., Катанова Р.К., Александрова Е.М., Краснов И.И. Совершенствование разработки газонефтяной залежи Среднеботуобинского месторождения. Материалы III Международной научно-практической конференции: Актуальные проблемы научного знания. Новые технологии ТЭК. 2019: 119-123. [Tomskaya V.F., Katanova R.K., Alexandrova E.M., Krasnov I.I. Improving the development of gas and oil deposits of the Srednebotuobinsky field. Materials of the III International scientific and practical conference: Actual problems of scientific knowledge. New technologies of the fuel and energy complex. 2019; 119-123.] (In Russ)

FORECASTING THE DEVELOPMENT OF OIL AND GAS DEPOSITS WITH APPLICATION OF TECHNOLOGY FOR THE RESTRICTION OF GAS OUTLETS IN WELLS

V.F. Tomskaya, S.K. Gracheva, I.I. Krasnov, E.V. Vaganov Tyumen Industrial University, Tyumen, Russia; vanessatomskaya@gmail.com North-Eastern Federal University. M.K. Ammosova, Polytechnic Institute (branch), Mirny, (Sakha) Yakutia; umo_mir@mail.ru AO «NOVATEK-Pur», Novyy-Urengoy, Russia; e.v.vaganov@icloud.com

Abstract:

The purpose of the study: assessment of peer-reviewed foreign literary sources, study of a modern strategy for the implementation of measures to limit gas inflow into production wells using modern water-insulating compositions, diagnose the causes of gas pollution in wells that exploit the Botuobinsky horizon of the Srednebotuobinsky field and substantiate the development of complicating sub-gas deposits using effective technologies. Materials: The features of the geological structure of relatively "thin" oil rims with an extensive gas cap and underlying water-saturated horizon of the oil and gas condensate field in Western Yakutia are presented. Particular attention is paid to measures to limit the breakthrough of gas from the gas cap into the wells during the development of complex fields. One of the ways of associated gas utilization and improvement of the operation process is the use of gas insulating screens and horizontal wells, allowing to increase the contact area with the development object to extend the gas-free period of oil production. Results: Based on the results of calculation methods, the gas-free period of operation of wells operating sub-gas deposits of the BT formation is substantiated to increase the oil recovery coefficient. To achieve optimal gasfree production of oil reserves, a gas-free marginal rate is determined, as well as a corresponding marginal depression. The radius of the gas-insulating screen for the development conditions of the Botuobinsky horizon is substantiated and the technology of creating an artificial screen based on polymer compositions is proposed. Conclusions: As a result of the performed diagnostics of the causes of gas contamination of wells operating the Srednebotuobinskoye field with an extensive gas cap and a thin oil rim. It is relevant to consider such problems for specific fields using modern methodological approaches to calculating the gas-free operation time of wells. So, the shift of emphasis in the near future from oil production from simpler deposits to more complex deposits requires a generalization of the experience of development and justification of the optimal technologies for their development.

Keywords: botuobinsky horizon, extensive gas cap, thin oil rim, gas-insulating screen, gas-free operation period, extreme depression, gas breakthrough restriction technology

Вклад авторов:

В.Ф. Томская:	разработка дизайна исследования, написание текста рукописи, редактирование текста рукописи;
С.К. Грачева:	написание текста рукописи, редактирование текста рукописи;
И.И. Краснов:	написание текста рукописи, редактирование текста рукописи;
Е.В. Ваганов:	написание текста рукописи, редактирование текста рукописи.

Authors' contributions:

V.F. Tomskaya:	developing the research design, article writing, article editing;
S.K. Gracheva:	article writing, article editing;
I.I. Krasnov:	article writing, article editing;
E.V. Vaganov:	article writing, article editing.

Финансирование: Исследование не имело финансовой поддержки. Financing: The study was performed without external funding.

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов. Conflict of interest: The authors declare no conflict of interest.

Статья поступила / Article received: 29.09.2019. Принята к публикации / Accepted for publication: 16.12.2019.

Для цитирования:	Томская В.Ф., Грачева С.К., Краснов И.И., Ваганов Е.В. Прогнозирование разработки нефтегазовых залежей с применением технологии ограничения газопритоков в скважины. <i>Нефть и газ: опыт и инновации.</i> 2019; 3 (2): 3-19.
For citation:	Tomskaya V.F., Gracheva S.K., Krasnov I.I., Vaganov E.V. Forecasting the development of oil and gas deposits with application of technology for the restriction of gas outlets in wells. <i>Petroleum and gas: experience and innovation (Russia)</i> . 2019; 3 (2): 3-19. (In Russ)

УДК 622.276

© Коллектив авторов, 2019

МЕТОДИКА ПРОГНОЗИРОВАНИЯ ТЕКУЩЕГО СОДЕРЖАНИЯ КОНДЕНСАТА И ПОТЕРЬ УГЛЕВОДОРОДОВ В ПЛАСТЕ

Е.И. Инякина, Р.К. Катанова, М.Д.З. Альшейхли

ФГБОУ ВО «Тюменский индустриальный университет», г. Тюмень, Россия ФГБОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова», Политехнический институт (филиал), г. Мирный, (Саха) Якутия Киркукский университет, г. Киркук, Ирак

PREDICTION PROCEDURE FOR THE CURRENT CONDENSATE CONTENT AND LOSS OF HYDROCARBONS IN THE FORM

E.I. Inyakina, R.K. Katanova, M.D.Z. Alshaykhli Tyumen Industrial University, Tyumen, Russia North-Eastern Federal University. M.K. Ammosova, Polytechnic Institute (branch), Mirny, (Sakha) Yakutia Kirkuk University, Kirkuk, Iraq

Контактная информация:

Инякина Екатерина Ивановна – кандидат технических наук (SPIN-код: 8865-7273; ResearcherID: A-1091-2018; ORCID iD: 0000-0002-5205-2676). Место работы и должность: доцент кафедры «Разработки и эксплуатации нефтяных и газовых месторождений» ФГБОУ ВО «Тюменский индустриальный университет». Адрес: Россия, 625000, г. Тюмень, ул. Володарского, 36. Телефон: (3452) 28-30-27

Катанова Розалия Кирилловна – магистр (SPIN-код: 1888-3149; ORCID iD: 0000-0003-3815-4550). Место работы и должность: ассистент кафедры «Нефтегазовое дело», ФГБОУ ВО Северо-Восточный федеральный университет им. М.К. Аммосова, (филиал) МПТИ г. Мирный, (Саха) Якутия. Адрес: Россия, 678170, Республика Саха (Якутия), г. Мирный, ул. Ойунского, 14. Телефон: (41136) 4-30-73, электронный адрес: umo_mir@mail.ru

Альшейхли Мохаммед Джавад Зейналабидин – кандидат технических наук (SPIN-код: 4045-3188; ResearcherID: L-3778-2018; ORCID iD: 0000-0002-6679-2309). Место работы и должность: заведующий кафедрой «Нефтегазовое дело» Факультета инженеринга. Киркукский университет. Адрес: Ирак, г. Киркук

Цель исследования: прогнозирование пластовых потерь конденсата и динамики давления начала конденсации в ходе разработки эксплуатационного объекта. Определение потерь конденсата по результатам экспериментальных исследований пластовой углеводородной системы на *PVT*-установках или на основании аналитических методов, без учета пористой среды и при условии ниже начального пластового давления в залежи. Материалы: По пробам, отобранным на Восточно-Уренгойском+Северо-Есетинском месторождении при первичных промысловых газоконденсатных исследованиях пласта БУ₁₆^{1.4}, были изучены начальные термодинамические и физико-химические свойства конденсата. Результаты: По результатам лабораторных термодинамических исследований строились кривые потерь конденсата на текущий период разработки залежи методом дифференциальной конденсации, определялось текущее давление начала конденсации. Выводы: для прогнозирования пластовых потерь конденсата на разных стадиях разработки месторождения и определения текущего давления начала конденсации, апробирован метод ООО «Газпром ВНИИгаз», основанный на решении оптимизационной задачи.

Ключевые слова: конденсат, давление начала конденсации, коэффициент извлечения конденсата, разработка залежей, насыщенный конденсат, потери конденсата

Нефтегазоконденсатные месторождения является многопластовыми, вследствие этого требуют специального комплексного подхода при разработке залежей. Разработка таких месторождений обуславливается возможностью проявления ретроградной изотермической конденсации в процессе снижения пластового давления, предопределяющего потери насыщенного конденсата в залежи. Для эффективной разработки необходимо прогнозирование пластовых потерь конденсата и динамики давления начала конденсации в ходе разработки эксплуатационного объекта. Определяются потери конденсата по результатам экспериментальных исследований пластовой углеводородной системы на *PVT*-установках, без учета пористой среды или на основании аналитических методов [1, 2, 3].

По пробам, отобранным из пласта БУ₁₆¹⁻⁴ Восточно-Уренгойского+Северо-Есетинского месторождения при первичных промысловых газоконденсатных исследованиях, начальные свойства конденсата были изучены по 27 пробам. Результаты исследований показали, что молекулярная масса конденсата варьирует от 109 до 123 его цвет изменяется от светложелтого до темно-коричневого, плотность – от 0,7619 до 0,799 г/см³. Является малосернистым (не более 0,035% массы), малопарафинистым (не более 1,9% массы). Исключением является проба из скважины № 206ses, в которой содержание парафина составляет 4,31%, что соответствует более высокому значению потенциального содержания конденсата по пласту (273,1 г/м³). Температура начала кипения конденсата изменяется от 54 до 120°С. По групповому углеводородному составу конденсат относится к нафтено-метановому типу, концентрация ароматических углеводородов изменяется от 8,5 до 22,37% массы.

Свойства конденсата, отобранного в процессе разработки залежи при давлении ниже начального пластового, изучены по 33 пробам. Отмечается изменение начальных свойств конденсата. На примере скважины № 401ves, № 4060ses, № 4061ses, по которым выполнены временные определения свойств конденсата в течение последних семи лет эксплуатации, происходит снижение плотности, молекулярной массы, температуры начала кипения, содержания серы, парафинов. Уменьшается потенциальное содержание конденсата в газе и давление начала конденсации углеводородной смеси. По замерам в скв. № 401ves плотность конденсата снизилась с 0,7743 до 0,7574 г/см³, молекулярная масса – с 135 до 118, температура начала кипения – с 58,5 до 38° С, содержание парафина - с 0,75 до 0,26% массы. Потенциальное содержание конденсата уменьшилось с 183,95 до 130,58 г/м³ пластового газа, давление начала конденсации снизилось с 30,38 до 27,41 МПа. По замерам в скважине № 4060 ses плотность конденсата снизилась с 0,7831 до 0,732 г/см³, молекулярная масса – со 125 до 100, температура начала кипения – с 74,6 до 39°С, содержание парафина – с 0,68 до 0,48 % массы. Таблииа 1

Групповой углеводородный состав конденсата Восточно-Уреногойского и Северо-Есетинского месторождения, первичные исследования

Номер	Mutannay Handonayuw M	Групповой углеводородный состав конденсата, % масс.							
скважины	интервал перфорации, м	Ароматические	Нафтеновые	Метановые					
Пласт БУ ₁₄									
301 wur	3115-3133	20,61	23,67	55,72					
	Пласт БУ ₁₆ ¹⁻⁴								
90 wur	3287-3302	17,37	32,40	50,23					
203 ses	3320-3324	16,42	27,88	55,70					
205 ses	3326-3330	22,37	25,92	51,71					
206 ses	3333-3337	18,62	46,49	34,89					
207	3292-3302	14,54	53,07	32,40					
207 ses	3308-3314								
207 ses	3308-3314	17,43	52,29	30,28					
208 ses	3301-3306	16,27	49,35	34,38					
208 ses	3315-3319	15,76	41,28	42,96					
200 ses	3278-3288	13,61	49,48	36,90					
209 ses	3290-3298								
307 wur	3258-3268	21,30	25,48	53,22					
311 wur	3259-3266	16,15	37,71	46,14					
313 wur	3316-3332	13,14	49,45	37,41					
314 wur	3272-3291	13,42	55,01	31,57					
317 wur	3282-3302	11,24	46,27	42,49					
351ejah	3239-3255	16,71	34,04	49,25					
360ejah	3408-3420	8,50	45,84	45,66					
401wes	3328-3343	17,52	44,62	37,86					
402wes	3326-3330	14,66	41,05	44,29					
		Пласт БУ ₁₇ ¹⁻²							
206 ses	3383-3386	17,11	41,66	41,23					
207 ses	3363-3375	18,38	53,35	28,27					
208 ses	3369-3377	15,75	47,09	37,16					
		Пласт БУ ₁₇ ¹⁻³							
207 ses	3385-3390	12,82	55,13	32,05					
		Пласт БУ ₁₈ ¹							
204 ses	3426-3431	16,13	29,57	54,30					

Потенциальное содержание конденсата уменьшилось с 170,47 до 162,50 г/м³ пластового газа, давление начала конденсации снизилось с 34,46 до 27,46 МПа. По замерам в скважины № 4061ses плотность конденсата снизилась с 0,7704 до 0,7432 г/см³, молекулярная масса – со 124 до 106, температура начала кипения – с 58,5 до 35°С. Потенциальное содержание конденсата уменьшилось с 170,72 до 163,79 г/м³ пластового газа, давление начала конденсации снизилось с 33,51 до 24,0 Мпа [4, 5].

По скважине № 2101_4ses определены свойства конденсата, отобранного при совместной работе пластов БУ₁₆¹⁻⁴, БУ₁₇¹⁻² и БУ₁₈¹⁻². Плотность его составляет 0,7534 г/см³, молекулярная масса – 114, малосернистый (0,02 %), малопарафинистый (0,36% массы), температура начала кипения составляет 38°С. Потенциальное содержание конденсата – 170,63 г/м³. Дистиллятный остаток с температурой выкипания выше 300°С, полученный при фракционной разгонке стабильного конденсата, может использоваться в качестве базовой основы при производстве технологических топлив: топочного мазута марки М-40. В таблицах приведены результаты исследований.

Рис. 1. Сопоставление плотности стабильного конденсата с молекулярной массой.

В результате исследований пласт $EV_{16}^{1.4}$ охарактеризован начальными свойствами стабильного конденсата, по пяти пробам. Проба конденсата, отобранная из скважины № 207sam, содержит примеси нефти и характеризуется более высокими значениями основных характеристик, более высоким содержанием нафтеновых углеводородов – до 53,35 и пониженным метановых – 28,27% массы.

Таблица 2

	Интервал	Π	Групповой углеводородный состав конденсата, % масс.						
№ СКВ.	перфорации, м	Дата исследования	Ароматические	Нафтеновые	Метановые				
	Пласт БУ ₁₆ ¹⁻⁴								
02	3279-3294	27.02.2006	15,39	51,49	33,12				
93 wur	3280-3290								
		10.10.2004	17,27	44,76	37,97				
210 ses	3319-3327	21.12.2005	14,72	55,33	29,95				
		04.11.2006	14,70	52,18	33,12				
317 wur	3282-3302	15.12.2005(глуб)	13,76	57,23	29,01				
		25.10.2014	18,80	48,37	32,83				
401 wes	3328-3343	05.10.2015	17,52	44,62	37,86				
		20.10.2017	13,14	44,55	42,31				
413 zjar	3346-3350	19.01.2008	12,51	44,34	43,15				
2100 and	3624-3637	19.03.2005	18,01	48,40	33,59				
2100 ses		25.10.2006	14,14	55,14	30,72				
2102 ses	3585-3862	16.09.2005	17,15	48,02	34,83				
		12.10.2006	14,33	55,59	30,08				
4011 ses	3734-3758	31.08.2005	16,05	48,47	35,48				
		09.03.2005	19,58	49,94	30,48				
4060 ses	3711-3727	18.11.2006	13,50	57,72	28,78				
		22.07.2007	12,93	43,16	43,91				
4061 cos	2800 2854	24.09.2005	16,54	50,69	32,77				
4001 Ses	3800-3834	14.11.2006	15,03	58,51	26,46				
4062	2428 2475	22.08.2002	12,51	40,54	46,95				
4005 ses	3438-34/3	19.02.2014	12,50	43,54	43,96				
4092 zjar	3710-3715	01.10.2005	12,43	47,74	39,83				
4131 zjar	3625-3631	27.08.2007	12,22	45,27	42,51				
4133 zjar	3588-3592	19.04.2008	10,63	50,80	38,57				

Групповой углеводородный состав конденсата пласта БУ ₁₆ ¹⁻⁴ (первичнь	ые исследования)	я)
---	------------------	----

Таблица 3

	TI	Фракционный состав, %						
Номер	Интервал	Дата	UIC 0C	1.00/	500/	000/		Остаток+
СКВ.	перфорации, м	исследования	пк, с	10%	30%	90%	KK, C	потери, %
	Пласт БУ ₁₆ ¹⁻⁴							
02 yaar	3279-3294	27.02.2016	44,5	79	138,5	286	345,5	2,55
95 Wul	3280-3290	27.02.2010						
		10.10.2014	29,7	72,7	146,1	349,4	370,4	7,8
210 ses	3319-3327	21.12.2015	40,1	77,8	141,3	288,2	354,2	2,53
		04.11.2016	34,5	67	136	289,5	347	3
317 wur	3282-3302	15.12.2015	38,5	74,5	137,5	287,5	346	3,17
		25.10.2014	58,5	94,2	152,5	301	364,5	2
401wes	3328-3343	05.10.2015	77	110	165	299	>360	2
		20.10.2017	38	76,6	140,5	297,5	362	3
413 zjar	3346-3350	19.01.2008	46	80	137,5	276	346	2
		19.03.2015	52,2	86,2	147,6	297	363,5	2,39
2100 ses	3624-3637	25.10.2016	37	74,5	136	280	328,5	4,3
		1.10.2011	37	72	134	268	321	3
		16.09.2005	51,5	86,5	150	305,5	367	1,44
2102 ses	3585-3862	12.10.2006	38	75,5	141	292	353,2	3,25
		30.09.2011	71	92	196	290	324	3
2102	3375-3389	89 50 29.09.2011	27	(0)	120	267	202	2
2103 ses	3438-3450		57	69	138	267	302	3
2104	3834-3841	28.00.2011	28	71	127	200	224	r
2104 ses	3899-3902	28.09.2011	20	/1	137	290	524	3
4011 ses	3734-3758	31.08.2015	49	81	142,5	287,5	356	1,5
	3711-3727	09.03.2015	74,6	107,6	164	311,9	376,8	1,8
4060 505		18.11.2016	43	80	140,5	288	356,5	2,3
4000 ses		22.07.2017	46,5	80,5	140,5	283	355	3
			39	68	134	271	397	3
		24.09.2015	58,5	91	146,5	285,5	358	2
4061 ses	3800-3854	14.11.2016	43,5	82,5	136	273	347,5	2,13
		2011	35	75	134	259	298	2
		22.08.2017	38,8	73,5	134,5	278,5	338	3
4063 ses	3438-3475	19.02.2018	35,5	71,5	135,5	287,5	343	3,68
		2011	42	78	134	281	301	3
	3710-3715	01.10.2018	41	81	139,5	271	341	2
4092 zjar	3710-3715	02 10 2011	20	80	149	206	217	15
	3803-3808	02.10.2011	39	80	148	280	517	1,5
		27.08.2017	37	73	137,5	287	347,5	4,04
4121 zior	2625 2621	20.06.2010	58	84	133	259	312	2,8
4151 ZJaľ	3023-3031	2011г.	43	79	137	266	303	2
		17.05.2012	59	87	133	249	307	1,5
4133 zjar	3588-3592	19.04.2008	39,5	73	133,5	274	328,5	3

Фракционный состав проб конденсатов из валанжинских пластов (отобранные в процессе разработки месторождения)

По остальным скважинам плотность конденсата изменяется от 0,7639 до 0,7816 г/см³, молекулярная масса – 119-122, температура начала кипения – 60-80°С. Содержание серы не превышает 0,014%, парафина – до 4,58%, смол – до 662 мг/100 мл.

По групповому углеводородному составу конденсат является нафтено-метановым, концентрация нафтеновых углеводородов изменяется от 41,66 до 53,35, метановых – от 28,27 до 41,23%. Содержание ароматических углеводородов варьирует от 15,75 до 18,38 % массы.

Определены свойства конденсата, отобранного из эксплуатационных скважин № 406zjar, № 2103ses и № 210ses, разрабатывающих пласты ${\rm БУ_{16}}^2$ и ${\rm БУ_{17}}^{1-2}$. Из скважины № 406zjar отбор проб проведен в 2015 году, начале и конце 2016 года и в середине 2011 года. Отмечается снижение молекулярной массы (со 123 до 106), вязкости (с 1,06 до 0,834 сСт), плотности (с 0,7576 до 0,7434 г/см³). По остальным характеристикам закономерность во времени не прослеживается. Конденсат из скважины № 2103ses - светло-желтый, плотность – 0,7374 г/см³, молекулярная масса – 103. Содержание серы не более 0,02 % массы, парафинов – 0,14 % массы. Конденсат из скважины № 210ses – мутно-желтый, плотность – 0,7576 г/см³, молекулярная масса – 116. Содержание серы не более 0,012 % массы, парафинов – 0,05 % массы [6, 7].

Начальные свойства конденсата пласта $5Y_{17}^{1-1}$ определены по пробе, отобранной из эксплуатационной скважины № 401ves, работающей совместно на пластах $5Y_{16}^{1-4}$ и $5Y_{17}^{1-2}$. Определена только плотность, которая в среднем (по трем определениям) составляет 0,7967 г/см³. В процессе разработки конденсат отобран из эксплуатационных скважин № 406zjar, № 409ur, № 4071 zjar, № 4073 zjar и № 4134_2ses, замеры охватывают промежуток времени с 2015 по 2017 годы.

Рис. 2. Сопоставление плотности стабильного конденсата с температурой начала кипения.

Плотность конденсата изменяется 0T 0,7480 до 0,7761 г/см³, молекулярная масса – от 107 до 121. Групповой углеводородный состав конденсата является нафтено-метановым и метано-нафтеновым. Концентрация нафтеновых углеводородов изменяется от 40,54 до 48,54, метановых – от 35,92 до 46,47, ароматических - от 11,58 до 15,54% массы. Содержание серы в конденсате не превышает 0,018%, парафина – 0,5%. Закономерность изменения свойств конденсата во времени не прослеживается. Имеются данные по свойствам конденсата при совместной эксплуатации пласта БУ17¹⁻² и ${\rm БY}_{16}^{1-4}$, ${\rm БY}_{16}^2$ и ${\rm БY}_{17}^{1-3}$. Начальные характеристики конденсата исследованы на пробе из скв. № 207sam. Конденсат - тяжелый (плот-

ность 0,8080 г/см³, молекулярная масса – 157, температура начала кипения – 92°С). Содержание серы – 0,021% массы. По групповому углеводородному составу конденсат относится к нафтено-метановому типу (соотношение концентраций 55,13/32,01 %), при содержании ароматических углеводородов 12,82%. В процессе эксплуатации отобрана проба из скв. № 911wur, эксплуатирующей совместно пласты ${\rm FV}_{17}^{1-2}$ и ${\rm FV}_{17}^{1-3}$. Конденсат, отобранный из пласта ${\rm FV}_{17}^{1-3}$ – легкий, имеет желтый цвет, плотность составляет 0,7553 г/см³, молекулярная масса – 117, температура начала кипения – 36°С. Содержание серы составляет 0.01 %, парафина - не превышает 0,3%. По групповому углеводородному составу относится к нафтенометановому типу. Концентрация нафтеновых углеводородов составляет 46,28%, метановых – 41,45%. В процессе эксплуатации отобрана проба конденсата из скважины № 409ur. Конденсат - коричневого цвета, плотность составляет 0,7598 г/см³, молекулярная масса – 120. Температура начала кипения конденсата, отобранного при первичных исследованиях, изменяется от 34⁰С (скважина № 504ur, пласт БУ₁₆¹⁻⁴) до 102⁰С (скважина № 351ејх, пласт БУ₁₇¹⁻¹), по пробам, отобранным в процессе эксплуатации, – от 38°С (скважина № 380ur, пласт БУ₁₇ⁱ⁻¹) до 69⁰С (скважина № 376ur, пласт БУ₁₇¹⁻¹). По данным разгонки по Энглеру, в пробах присутствуют незначительные примеси нефти, что диагностируется низким процентом остатка, достигающим до 15,5% массы в первичных исследованиях и от 2 до 4%.

Конденсаты, отобранные при первичных исследованиях, малосернистые (0,006 - 0,090%), мало- и парафиновые (до 3,79%), смолы силикагелевые варьируют в пределах 5,4-186 мг/100 мл, либо отсутствуют. Из общего числа выделяются проба, отобранная при первичных исследованиях из скв. № 208иг, по которой показатель содержания смол составляет 2030 мг/100 мл, при среднем содержании смол – 50,8 мг/100 мл.

Начальные свойства конденсата определенны на пробах из двух скважин: скважина № 208ses. Плотность варьируется от 0,7695 до 0,7885 г/см³, молекулярная масса от 113 до 120, температура начала кипения от 56 до 81°С. Содержание серы в конденсате не превышает 0,02 % массы, парафина содержится от 0,195 до 3,79% (скважина № 208ses) массы. По групповому углеводородному составу конденсат относится к метано-нафтеновому типу.

Таблица	4
---------	---

	Интервал	Групповой углевод	ородный состав кондене	сата, % масс.	
помер скважины	перфорации, м	Ароматические	Нафтеновые	Метановые	
		Пласт БУ ₁₆ ¹⁻⁴			
208 ur	3163-3180	17,92	32,14	49,94	
		Пласт БУ ₁₆ ¹⁻²			
411 ur	3232-3240	14,38	36,01	49,61	
504 ur	3214-3220	19,59	27,39	53,02	
504 ur	3224-3228	17,01	25,42	57,57	
669	2224 2227	19,15	29,96	50,89	
008 ui	5224-5257	19,27	31,03	49,70	
		Пласт БУ ₁₆ ¹⁻³			
200 ur	3285-3293	27,97	25,77	46,26	
	Пла	ст БУ ₁₇ ¹⁻¹ , Ево-Яхинский	л.у.		
350 ejx	3365-3376	15,71	34,50	49,79	
351 ejx	3341-3353	18,88	39,76	41,36	
447 ejx	3353-3385	9,66	64,39	25,95	

Групповой углеводородный состав конденсата (первичные исследования)

Начальные свойства конденсата определенны по пробам из трех скважин. Плотность варьируется от 0,7679 до 0,7995 г/см³, молекулярная масса от 118 до 120, температура начала кипения от 53 до 102° С. Содержание серы в конденсате не превышает 0,09% массы, парафина содержится от 0,9 до 2,5% массы. По групповому углеводородному составу конденсат относится к метано-нафтеновому типу, при содержании ароматических углеводородов от 9,66 до 18,88% массы. В процессе разработки конденсат отобран из шести эксплуатационных скважин. Плотность варьируется от 0,7470 до 0,7770 г/см³, молекулярная масса от 110 до 133, температура начала кипения от 38 до 69°С.

Начальное фазовое состояние газоконденсатных систем в пластовых условиях и в процессе разработки залежей на истощение исследовалось в лаборатории на установке-PVT. Пробы газа сепарации и насыщенного конденсата рекомбинировались в соответствии с промысловым газоконденсатным фактором и помещались в бомбу высокого давления. Задавались начальные пластовые условия, определялось фазовое состояние углеводородной системы и ступенчато снижалось давление путем выпуска газа из бомбы. Определялись давление начала конденсации, потери насыщенного конденсата для соответствующего пластового давления. По результатам лабораторных термодинамических исследований строились кривые дифференциальной конденсации, определялся КИК. В процессе геологоразведочных работ на Восточно-Уренгойском+Северо-Есетинском месторождении проведено девять лабораторных термодинамических исследований для проб, отобранных при первичных исследованиях и 42 исследования для проб, отобранных на текущий момент разработки. Результаты экспериментов по изучению фазового поведения пластовых смесей залежей Восточно-Уренгойского+Северо-Есетинского месторождения представлены на рисунках 3, 4 (первичные) и в таблицах.

Однако в большинстве случаев исследования на газоконденсатность проводились с нарушениями требований к режимам эксплуатации скважин при газоконденсатных исследованиях, скважины работали нестабильно по выносу жидких углеводородов, что искажало картину при рекомбинации пластовой смеси в установке PVT. Некачественные пробы соответственно увеличивали ошибку определения состава и свойств пластовой смеси и, в частности, давления начала конденсации [8, 9].

По термодинамическим исследованиям давление начала конденсации, определенное при первичных исследованиях, для пласта $5V_{16}^{1.4}$ изменяется от 27,83 МПа (скважина № 207ses) до 38.22 МПа (скважина № 206ses), для пласта $5V_{18}^{1}$ давление начала конденсации – 29,79 МПа, при Рпл. – 33,08 МПа. Для новых проб, отобранных в процессе разработки, давление начала конденсации изменяется для пласта $5V_{16}^{1.4}$ от 24,91 МПа (скважина № 4063ses, в процессе эксплуатации) до 34,46 МПа (скважина № 4063ses, в процессе эксплуатации), для пласта $5V_{17}^{1.2}$ давление начала конденсации изменяется от 23,08 МПа (скважина № 911uг) до 32,09 МПа (скважина № 4134ses).

Таблица 5

Потери насышенного конленсата	(первичные исследования)
потери насыщенного конденсата	(первичные исследования)

		Инте	пвац		Потери	Плотности	Цопольный	
Номер	Плост	перфор	ании м	Р пл,	потери		пачальный	К извл,
скважин	11JIac I	перфор	ации, м	МΠа	насыщенного конценсата cm^3/m^3	Γ_{10}	потенциал, т/м	д. ед.
		от	до	22.44	конденсата,ем /м	конденсата, т/см	(на газ сспарации)	0.5(4
				32,44			202,58	0,304
				30,18	HK 21.1			
	Homep (maxim) Пласт пеффорации, м) от Р. пп, до Потери насыщенного конденсата, г/см Плотиость стабильного конденсата, г/см Нача потем- потем- конденсата, г/см 90 hai БУ ₁₆ ¹⁻⁴ 3287 3302 32,44 Рил 20 30,18 НК 20 30,18 НК 20 24,01 70,9 20,58 115,4 21 24,01 70,9 20,58 115,4 21 24,01 70,6 165,5 21 21 17,64 142,0 20 20 20 20 20 14,70 158,3 20 20 20 20 20 20 20,29 130,8 20							
				20,58	115,4			
				1/,04	142,0			
90 hai	БУ ₁₆ ¹⁻⁴	3287	3302	14,70	158,5			
				11,/0	165,5			
				8,82 5.09	165,9			
				5,98	155,2			
				3,33	141,8			
				1,80	138,0			
				0,29	130,8	0.7000		
				0,10	110,5	0,7990	104.6	0.506
				32,63	Рпл		194,6	0,506
				32,14	HK			
				29,91	52,7			
				25,68	97,7			
				22,54	142,8			
	1.4			19,31	171,7			
203 ses	БУ ₁₆ ¹⁻⁴	3320	3324	15,97	182,7			
				12,64	187,0			
				9,64	176,8			
				6,37	164,0			
				3,14	148,7			
				0,16	132,6			
				0,10	120,7	0,7963		
				33,57	Рпл		302,6	0,585
				38,22	НК			
				29,69	34,8			
				26,46	82,8			
				23,13	127,9			
				19,80	161,8			
206 ses	БУ ₁₆ ¹⁻⁴	3333	3337	16,46	186,1			
				13,13	196,1			
				9,80	194,4			
				6,57	184,0			
				3,53	169,5			
				0,29	152,0			
				0,10	150,0	0,8093		
				32,48	Рпл		215,4	0,692
				27,83	НК			
				25,09	31,0			
				21,76	59,6			
				19,50	85,2			
207	EV ¹⁻⁴	3292	3302	16,56	100,4			
$\angle 0$ / ses	DУ ₁₆	3308	3314	13,62	112,4			
				10,68	115,2			
				7,55	108,4			
			-	4,51	101,4			
				0.39	93.9			
				0,10	83,0	0,7988		

	-						Продолжение та	блицы 5
		Инте	рвал		Потери	Плотность	Начальный	
Номер	Пласт	перфор	ации, м	Рпл,	насыщенного	стабильного	потенциал. г/м ³	К извл,
скважин		от	ДО	MHa	конденсата,	конденсата,	(на газ сепарации)	д. ед.
			, (22.02		П/СМ	106.9	0.680
				20.80			190,8	0,089
				29,89				
				20,40	21,2			
				25,42	43,4			
				20,39	07,9			
208 ses	БУ ₁₆ ¹⁻⁴	3301	3306	17,04	100.2			
				14,41	100,2			
				7.94	104,8			
				/,04	05.1			
				4,80	93,1			
				0,39	82,1	0.8010		
				0,10	/0,4	0,8010	202.2	0.650
				32,73			202,2	0,030
				20.60				
				29,00	3,0			
				20,40	17,0			
		2250	2266	25,05	49,1			
311	БV ¹⁻⁴	3239	3200	19,40	85,0			
wur	Dy ₁₆	3200	5275	10,17	100,5			
				12,84	120,2			
				9,00	122,9			
				0,57	114,4			
				3,82	04.6			
				0,29	94,0	0.7010		
				22.87	00,9 Data	0,7919	227.2	0.572
				32,87			227,2	0,373
				27.54	22.2			
				27,34	55,2 69.4			
				24,30	107.5			
				18.52	107,5			
317	БV ¹⁻⁴	2787	3302	16,32	150,0			
wur	Dy ₁₆	5262	3302	12,56	167.2			
				0.51	168.2			
				9,31	108,2			
				2.62	137,5			
				0.20	143,1			
				0,39	129,3	0.8012		
				22.60	121,2 Dat	0,8012	242.8	0.460
				22.61			242,0	0,400
				20.28	ПК 28.7			
				27.05	20,7			
				27,03	<u>87,1</u>			
				25,02	202.2			
402 ves	БV ¹⁻⁴	3326	3330	20,19	205,2			
702 103	1 9 16	5520	5550	13.23	223,1			
				9.80	229,0			
				5 78	220,0			
				2 94	1863		1	
				0 29	167.4			
				0,10	166.2	0,7888		
				1 -	- ,	,	1	L

Номер скважин	Пласт	Инте перфор от	ервал ации, м до	Р пл, МПа	Потери насыщенного конденсата, см ³ /м ³	Плотность стабильного конденсата, г/см ³	Начальный потенциал, г/м ³ (на газ сепарации)	К извл, д. ед.
				33,08	Рпл		234,5	0,685
				29,79	НК			
				26,85	20,7			
				23,91	50,9			
				20,48	93,8			
				17,54	117,4			
204 ses	$5 \mathrm{V_{18}}^{1}$	3426	3431	14,70	131,4			
				11,76	137,2			
				8,82	134,6			
				6,08	127,5			
				3,53	116,6			
				0,29	95,7			
				0,10	92,6	0,7981		

Продолжение таблицы 5

Следует обратить внимание, что давление начала конденсации почти по всем пробам (за исключения четырех, отобранных при больших депрессиях с возможным захватом части выпавшего в призабойной зоне конденсата) было ниже начального пластового давления. Однако чётко выраженных закономерностей в динамиках давления начала конденсации или конечного коэффициента извлечения конденсата (КИК) по пластам не прослеживается [10].

В расчетах дифференциальной конденсации предлагается ориентироваться на давление начала конденсации меньше начального пластового давления по залежам. Возникают сомнения в точности оценки коэффициентов извлечения конденсата потому, что в условиях бомбы PVT не воспроизводятся все физические процессы, которые могут происходить в реальном пласте (учет фильтрационноемкостных свойств пород, наличие остаточной водонасыщенности и т.д.). Конечный коэффициент извлечения конденсата по результатам термодинамическим исследований изменялся по пласту БУ₁₆¹⁻⁴ от 0,560 до 0,763, по пласту БУ₁₇¹⁻² – от 0,590 до 0,670. Поскольку исследования на газоконденсатность проводились с нарушением требований, предъявляемым к технологическим режимам работы скважин, и результаты РVТ-исследований рекомбинированных проб колеблются в довольно широких пределах, значение КИК на конечное давление 0,1 МПа оценивалось по результатам расчета фазовых состояний. Реальные экономически рентабельные коэффициенты извлечения конденсата на давление забрасывания уточнялись по результатам расчетов показателей разработки на постоянно действующей трехмерной трехфазной геолого-технологической модели [11, 12].

Рис. 3. Результаты первичных РVТ-исследований пластовых смесей (группировка по скважинам 90hai, 203ses, 206ses, 207ses).

Рис. 4. Результаты первичных РVТ-исследований пластовых смесей (группировка по скважинам) 204ses, 311wur, 402ves).

Таблица б

номер		Инте	рвал ании м	Дата	Рпп	Потери насышенного	Плотность стабильного	Начальный потенциал	Кизвп
скважин	Пласт	περφορ	ации, м	промыслового	МПа	конденсата,	конденсата,	г/м ³ (на газ	д. ед.
		ОТ	до	исследования		см ³ /м ³	г/см ³	сепарации)	
					28,70	Рпл		143,43	0,660
					27,20	НК			
					25,72	5,33			
					22,96	25,82			
					20,20	47,36			
		3279	3294		17,44	65,35			
93wur	БУ ₁₆ ¹⁻⁴	3280	3290	2016 год	14,69	75,84			
					11,93	80,04			
					9,17	78,26			
					6,41	74,31			
					3.52	69.87			
					0,48	64,63			
					0,10	62,13	0,7956		
					33,00	Рпл		227,05	0,763
					33,02	НК		,	,
					31,15	1,94			
					28,98	7,75			
					26,29	20,87			
					24,56	30,55			
					22,18	44,54			
					20,18	54,65			
					17,84	63,69			
210ses	БУ ₁₆ ¹⁻⁴	3319	3327	2014 год	15,92	69,50			
					13,96	74,88			
					11,82	77,67			
					10,80	/8,/5			
					9,84	80,04			
					8,47	79,18			
					3,07	77,07			
					0.52	69.28			
					0.10	66.92	0.8042		
					29.80	Рпл	0,0012	193.65	0.620
					29,70	НК		,	- ,
					26,61	27,50			
					23,48	61,17			
					20,49	98,54			
					17,57	121,77			
210ses	БУ ₁₆ ¹⁻⁴	3319	3327	2015 год	14,40	134,12			
					11,40	138,05			
					8,49	133,00			
					5,49	122,33			
					2,74	109,31			
					0,48	94,84	0 7072		
		1	1	1	0,10	92,03	0,1912		1

Потери насыщенного конденсата (в процессе эксплуатации)

							П	родолжение т	аблицы б
		Интерв	ал пер-	Лата		Потери насы-	Плотность	Начальный	
Номер	Пласт	фораі	ции, м	промыслового	Рпл,	шенного кон-	стабильного	потенциал,	Кизвл,
скважин	1111401	ОТ	ло	исслелования	MIIa	ленсата, cm^3/m^3	конденсата,	г/м' (на газ	д.ед.
		01	до	постодовании		A	г/см ³	сепарации)	
					31,85	Рпл		204,35	0,680
					28,54	НК			альный Кизвл, (на газ д.ед. рации) 4,35 0,680
					25,70	24,72			
					22,85	60,88		Просолжение таолицы 6 Начальный потенциал, км ³ (на газ сепарации) Кизвл, д.ед. 204,35 0,680 204,35 0,680 204,35 0,680 204,35 0,680 204,35 0,680 204,35 0,680 204,35 0,680 204,35 0,680 204,35 0,680 204,35 0,680 204,35 0,680 204,35 0,680 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 20,050 204 20,050 204 20,0710 204 20,0710 204 20,0710 204 20,0710 204 20,0710 204 20,0710	
					19,97	91,92			
210	EV 1-4	2210	2227	2016	1/,12	113,11			
210ses	БУ ₁₆	3319	3327	2016 год	14,27	126,14			
					11,45	128,33			
					8,33	125,55			
					$\frac{3,72}{2,00}$	113,91			
					2,90	24.96			
					0,40	81.57	0.7048		
					28.02	DTT	0,7940	180.65	0.560
					28,93	L IIV L IIV		180,05	0,500
					26.04	8.07			
					23,04	60.2			
					23,08	00,2			
				2015 год	17.93	127.97			
317war	БV., ¹⁻⁴	3282	3302	глубинная	15 17	144 75			
517 wui	D 9 16	5262	5502	проба	12 41	153.46			
				шт=10мм	9.65	153,84			
					6.74	143.85			
					3.61	126.17			
					0,50	103,37			
					0,10	99,91	0,8041		
					28,93	Рпл		193,72	0,630
					28,90	НК			
					25,97	17,30			
					23,10	56,92			
					20,24	90,40			
	14				17,25	115,51			
317wur	БУ ₁₆ 1-4	3282	3302	2015год	14,25	129,58			
				шт=6мм	11,45	132,25			
					8,65	129,69			
					5,90	121,09			
					3,16	109,37			
					0,46	93,19	0.7040		
					0,10	90,90 Daa	0,7940	104.40	0.710
					20.28			194,49	0,710
					20,30				
					27,49	9.77			
					25 79	19.54			
					23,75	34 51			
					20,25	49.16			
					18.63	62.40			
10.1				• • • •	16.11	79.10			
401ves	БУ ₁₆	3625	3631	2014 год	13.88	87.93			
					11,38	90,13			
					9,68	87,77			
					7,50	84,46			
					5,00	81,15			
					2,75	78,00			
					0,74	75,00			
					0,10	74,37			
					0,10	71,22	0,7990		

								родолжение т	аблицы б
				Пото		Потори насти	Плотность	Начальный	
Номер	Π	Интерв	вал пер-	дата	Рпл,	потери насы-	стабильного	потенциал,	Кизвл,
скважин	Пласт	форат	ции, м	промыслового	МΠа	щенного кон-	конденсата,	г/м ³ (на газ	д.ед.
		1 1		исследования		денсата, см ⁻ /м	г/см ³	сепарации)	
					29.80	Рпл		206.23	0.700
					33.24	НК			
					30.50	4 35			
					27.24	10.20			
					2/,24	20.01			
					24,50	44.40			
					18.02	44,49			
401	FW 1-4	2625	2(21	2015	16,02	70,24			
401ves	БУ ₁₆	3625	3631	2015 год	13,43	84,96			
					12,70	92,66			
					10,39	95,33			
					8,12	93,66			
					5,23	89,81			
					2,45	84,13			
					0,46	79,44			
					0,10	76,93	0,7930		
					29,80	Рпл		135,98	0,660
					27,41	НК		,	
					24.42	18 41			
					21,12	38.17			
					18 14	57.86			
					15.44	72 71			
401ves	БУ ₁₆ ¹⁻⁴	3625	3631	2017 год	13,43	/3,/1			
	10				12,46	83,33			
					9,47	86,19			
					6,48	83,33			
					3,49	75,59			
					0,50	60,71			
					0,10	57,86	0,7928		
					27,19	Рпл		189,98	0,630
					27,19	НК			
					25,70	14,94			
					22,94	45.37			
					19.64	85.22			
	14				16.05	114.21			
413zjar	БУ ₁₆ 1-4	3346	3350	2016 год	12.93	128.05			
					0.82	120,03			
					6 70	127,02			
					2.60	111.67			
					3,00	01.52			
					0,33	91,32	0.79((
					0,10	88,54	0,7800	202.12	0.700
					31,50	Рпл		202,13	0,720
					34,40	HK			
					32,72	3,76			
					31,52	5,01			
					28,34	13,61			
					25,15	25,96			
					22,08	42,26			
2100ses	БУ16 ¹⁻⁴	3624	3637	2015 год	18,98	62,49			
-	10			, , , , , , , , , , , , , , , , , , ,	15.46	84.88			
					12 42	97 77			
					9 30	100 99			
					6 50	94 37			
					3 50	8/ 57			
					0.50	04,32			
					0,30	/4,00	0.7002		
					0,10	09,84	0,7992	167.40	0 710
					28,25	Рпл		16/,40	0,/10
2100ses	БУ14 ¹⁻⁴	3624	3637	2016 гол	25,92	HK			
	10				22,41	34,89			
					20,68	52,18			

							Π	родолжение т	аблицы б
				Дата		Потери	Плотность	Начальный	
Номер	Плост	Интерв	ал пер-	промыслово-	Рпл,	насыщенного	стабильного	потенциал,	Кизвл,
скважин	пласт	фораг	ции, м	ГО	МΠа	конденсата,	конденсата,	г/м ³ (на газ	д.ед.
				исследования		cm^3/m^3	г/см ³	сепарации)	
					18,13	74,41			
					15.58	90.07			
					12.93	98.09			
					9.74	99.54			<i>ение таблицы 6</i> ьный циал, Кизвл, на газ д.ед. ации)
2100565	БV ¹⁻⁴	3624	3637	2016 год	7 70	95.67			
2100303	D 3 16	5024	5057	201010Д	5.03	86.40			
					2,60	75 57			
					2,09	(2.20			
					0,48	03,39	0.7000		
					0,10	60,88	0,7900	150.51	0.670
					31,44	Рпл		170,51	0,670
					31,44	НК			
					28,56	5,38			
					25,93	16,29			
					22,84	37,82			
					19,72	62,18			
2102ses	БУ16 ¹⁻⁴	3585	3862	2015 год	16,61	80,08			
	10				13,41	88,83			
					10.37	92.06			
					7 37	88.83			
					3.86	82 23			
					0.50	72.05			
					0,30	72,93	0.8077		
					0,10	09,83 D	0,8077		
					31,6/	Рпл		1 - 2 - 6 2	
					29,30	HK		173,60	0,630
					26,07	27,68			
					23,18	59,06			
				20,27	86,20				
					17,45	105,63			
2102ses	БУ ₁₆ ¹⁻⁴	3585	3862	2016 год	14,48	116,59			
					11,68	119,85			
					8.73	116.27			
					6.00	108.34			
					3 24	97 59			
					0.51	82 50			
					0.10	80.33	0.7964		
					21.07	00,55 Dra	0,7904	195.25	0.680
					21.07			165,25	0,080
					31,97	HK			
					29,23	3,22		-	
					26,22	14,16			
					23,13	37,82			
					20,00	65,66			
4011ses	БV., ¹⁻⁴	3734	3458	2015 год	16,96	86,42			
4011505	D 3 16	5754	5450	2013 год	13,80	98,00			
					10,70	100,58			
					7,59	97,04			
					4,74	91,08			
					2,31	83,68			
					0 40	78 21			
					0.10	75.63	0.7949		
					31 30	Рпп	-,	183.04	0 730
					34 46	НК		105,04	0,750
					21 22	5 20			
					20 20	3,20			
10/0	EV 1-4	2711	2727	2015	28,29	13,19			
4060ses	БУ ₁₆ .	3/11	5121	2015 год	23,04	28,69			
					22,14	48,15			
					19,09	66,95			
					14,85	84,60			
					10,16	90,37			

							Π_{l}	родолжение т	аблицы б
				Дата		Потери	Плотность	Начальный	
Номер	Плост	Интерв	ал пер-	промыслово-	Рпл,	насыщенного	стабильного	потенциал,	Кизвл,
скважин	пласт	форат	ции, м	го	МΠа	конденсата,	конденсата,	г/м ³ (на газ	д.ед.
				исследования		cm^3/m^3	г/см ³	сепарации)	
					6,89	85,09			
					3,20	76,52			
					0,40	69,10			
					0,10	62,66	0,7999		
					30,89	Рпл		171,34	0,600
					28,96	НК			
					26,08	24,52			
					23,17	59,51			
					20,31	91,32			
					17,51	114,92			
4060ses	БУ ₁₆ ¹⁻⁴	3711	3727	2016 год	14,58	129,18			
					11,72	132,56			
					8,84	129,38			
					6,00	120,15			
					3,14	105,17			
					0,52	89,78			
					0,10	87,21	0,7884		
					29,37	Рпл		178,03	0,610
					27,46	НК			
					24,63	28,89			
					21,95	56,40			
					19,26	80,60			
	1.4				16,57	99,41			
4060ses	БУ ₁₆ ¹⁻⁴	3711	3727	2017год	13,88	111,60			
					11,20	116,78			
					8,51	115,45			
					5,82	110,00			
					3,14	101,70			
					0,48	90,88			
					0,10	88,41	0,7934		
					31,36	Рпл		180,00	0,740
					33,51	НК			
					31,36	2,13			
					28,66	4,96			
					25,56	7,94			
					22,42	16,31			
4061ses	БУ16 ¹⁻⁴	3800	3854	2015 год	19,33	31,63			
					16,21	51,20			
					13,14	67,08			
					10,03	/4,46			
					6,83	/3,60			
					3,60	68,22			
					0,50	62,12	0.7072		
					0,10	39,30 D	0,7972	104.42	0.500
					29,45	Рпл		194,42	0,590
					28,48	HK			
					25,88	27,66			
					22,88	69,82			
					20,04	107,50			
4061.000	FV ¹⁻⁴	2000	2051	2016	1/,18	133,/3			
4001Ses	DУ ₁₆	3800	3834	2010 ГОД	14,54	149,33			
					11,42 8.60	131,09			
					0,09	143,35			
					3,8/	134,90			
					0.49	121,02			
					0,48	102,01	0 7811		
					0,10	101,50	0,7011		

							П	родолжение т	аблицы б
				Пата		Потери	Плотность	Начальный	
Номер	Пласт	Инте	ервал	промыслового	Рпл,	насыщенного	стабильного	потенциал,	Кизвл,
скважин	11,1401	перфор	ации, м	исспелования	МΠа	конденсата,	конденсата,	г/м' (на газ	д.ед.
			1	песследования		CM ³ /M ³	г/см ³	сепарации)	
					29,94	Рпл		133,52	0,680
					24,91	НК			
					22,19	21,71			
					19,48	38,20			
					16,76	52,62			
4063ses	БУ16 ¹⁻⁴	3438	3475	2017 год	14,05	63,83			
	10				11,33	/0,4/			
					8,02	/3,05			
					3,90	/1,02			
					3,19	56.05			
					0,49	54.27	0 7084		
					28.08	94,27 Dur	0,7984	171 74	0.620
					26,98			1/1,/4	0,020
					20,87	26.7			
					24,18	56 72			
					18.81	82 75			
	1.4				15,50	107.93			
4063ses	БУ ₁₆ ¹⁻⁴	3438	3475	2017 год	12 21	120.95			
					9.28	120,55			
					635	116.00			
					3.41	102.99			
					0.48	84.84			
					0.10	82.66	0.7884		
					25.89	Рпл	,	184.74	0.620
					28,98	НК			- ,
					25,81	26,35			
					22,65	64,03			
					19,48	98,78			
1002-ior	ΓV ¹⁻⁴	2710	2715	2016 597	16,32	119,86			
4092ZJai	БУ ₁₆	3/10	5/15	2010 год	13,15	131,96			
					9,98	133,52			
					6,81	125,62			
					3,64	111,17			
					0,48	92,53			
					0,10	87,84	0,7921		
					30,13	Рпл		191,05	0,610
					25,98	НК			
					22,47	49,59			
					19,66	90,27			
					16,86	122,96			
4131ziar	БУ16 ¹⁻⁴	3625	3631	2017 год	14,06	142,52			
- J**	- 10				11,25	149,25			
					8,45	146,12			
					3,65	135,95			
					2,82	119,21			
					0,48	98,09	0 7997		
					0,10	93,87	0,/88/	105.20	0.((0
					∠7,00 26.25			195,50	0,000
					20,23	33.36			
					23,70	72.62		+	
					18.60	103 54			
4133zjar	БУ ₁₆ ¹⁻⁴	3588	3592	2016 год	16.05	125 23			
					13 50	137.68			
					10.96	140 91			
					8.41	137.35			
					5,86	127,68			
					<i>,</i>	<i>.</i>			

							П	родолжение т	аблицы б
				Пата		Потери	Плотность	Начальный	
Номер	Пласт	Инте	ервал	промыслового	Рпл,	насыщенного	стабильного	потенциал,	Кизвл,
скважин	11,1401	перфор	ации, м	исспелования	МΠа	конденсата,	конденсата,	г/м' (на газ	д.ед.
				песледования		см ³ /м ³	г/см3	сепарации)	
					3,31	111,99			
					0,47	88,75			
					0,10	85,64	0,7810	242.01	0.700
					31,31	Рпл		243,01	0,700
					31,98	HK 29.2			
					28,43	28,5			
					24,92	<u> </u>			
	БУ16 ¹⁻⁴	2500	2 (2 0		17 70	00.8			
4134ses	+	3598	3628	2016 год	14.02	114.9			
	БУ17 ¹⁻²	3/26	3/35		10.60	120.2			
					7 00	115.2			
					3 52	105.9			
					0.48	96.51			
					0.10	04.50	0.7020		
					0,10	94,50 D	0,7838	101.10	0.45
					30,32	Рпл		191,18	0,45
					28,25	HK 29.10			
					25,49	38,10			
	1.4		3824		10.84	122.02			
	$5y_{16}^{1-4}$	3785	3934		17.02	164.92			
2101 4000	БУ ₁₆ ГV ¹⁻²	3920	3947	2017 50 7	14 19	183 54			
2101_4505	Dy ₁₇	39767	3988,	201710д	11.37	190,60			
		5770,7	7		8,54	188,25			
					5,72	177,33			
					2,94	158,92			
					0,54	138,48			
					0,10	135,92	0.7704		
					32,95	Рпл	,	217,86	0,71
					28,32	НК		, , , , , , , , , , , , , , , , , , ,	
					26,33	7,55			
					23,34	45,19			
	$\mathbf{D}\mathbf{V}^{1}$				20,67	77,05			
	БУ ₁₆ -4	3705	3747		17,88	101,48			
4062ses	$5V_{1}c^{2}$	3828	3857	2016 год	15,12	117,05			
1002505	5^{10}	3895	3902	2010104	12,22	122,72			
	-217				9,30	120,85			
					3 52	100.30			
					0.40	81.65			
					0,10	01,00			
					0,10	80,24	0 7002		
					22.05	D тт т	0,7902	102.56	0.64
					26.89	НК Т ШЛ		102,50	0,04
					20,07	43.88			
					21,23	85.42			
					18.86	119.83			
	БУ_16				16,13	138,13			
10/2	-4 EX 2	3705	3747	2017	13,44	148,91			
4062ses	БУ ₁₆ ГУ ¹⁶ 1	3828	3857	2016 год	10,74	150,73			
	ьу ₁₇ -2	3893	3902		8,07	144,37			
					5,36	132,94			
					1,88	113,60			
					0,52	105,29			
					0,10	102,56	0,7901		
					· ·	-	,		

							Про	должение та	блицы б
		Интервал перфорации, м		Пата		Потери цасть	Плотность	Начальный	
Номер скважин	Пласт			дата	Рпл,	потери насы-	стабильного	потенциал,	Кизвл,
		OT	ПО	промыслового	МΠа	$\Pi_{\text{CHHOLO KOH-}}$	конденсата,	г/м ³ (на газ	д.ед.
		01	до	исследования		денсата,см /м	г/см ³	сепарации)	
					31,89	Рпл		162,47	0,750
					28,55	НК			
					25,55	7,54			
					22,41	32,67			
					19,31	55,54			
106 zior	$5 {\rm y_{16}}^2 +$	3367	3373 3391	2015	16,20	74,09			
4002jai	БУ ₁₇ ¹⁻²	3387		2013 ГОД	13,10	83,19			
					10,00	84,57			
					6,89	77,99			
					3,79	68,89			
					0,48	54,24			
					0,10	51,99	0,7941		
					31,89	Рпл		224,91	0,620
					29,59	НК			
					26,22	27,25			
					23,44	68,56			
					20,70	103,71			
	${\rm BY_{16}}^2$ +	3367	3373	2016 год	17,93	129,23			
406zjar	БУ ₁₇ ¹⁻²	3387	3391		15,17	141,93			
5					12,41	145,51			
					9,65	144,52			
					6,62	134,41			
					3,59	123,56			
					0,48	109,75			
					0,10	107,28	0,7919		
					30,06	Рпл		179,82	0,630
		3367			26,96	НК			
					24,35	32,22			
					21,75	66,36			
					19,10	95,33			
	ΓV^2		3373 3391		16,25	117,72			
406zjar	$Dy_{16} + Dy_{16} + Dy_{1-2}$			2016 год	13,44	128,46			
	Dy ₁₇	3307			10,69	130,79			
					7,90	124,11			
					5,17	112,46			
					2,41	97,97			
					0,48	85,61			
					0,10	83,08	0,7940		
					32,06	Рпл		215,84	0,64
406zjar					29,72	НК			
					28,78	4,54			
					25,72	34,82			
					22,61	73,39			
					19,54	107,76			
	БУ17 ¹⁻²	² 3387	3391	2015 год	16,43	130,56			
					13,45	144,52			
					10,60	145,88			
					7,43	138,73			
					4,09	123,64			
					0,46	101,18			
					0,10	97,55	0,7928		

Номер скважин перфорагии, перфорагии, перфорагии, верновского неслезовано неслезовано переканов неслезовано неслез								Про	эдолжение та	блицы б
Hose cenaxini nepopulari netabolication netabolicati netabolicati netabolication netabolication netabolication netabo			Инте	ND0 T	Пото		Потери	Плотность	Начальный	
(csraam) Index index exponential incorrectionantial incorrectine incorectine incorrectionantialine incorrectionantial incoreco	Номер скважин	Пласт	FIFIC	рвал	Дата	Рпл,	насыщенного	стабильного	потенциал,	Кизвл,
409ur БУ ₁₁ ^{1/2} 3402 3405 2016 год 2016 год 2016 год 2016 год 2016 год 30.90 28.56 26.16 23.80 49.5 г/см3 2016 год 28.56 9.9 2014 82 2016 год 2000 0.65 20.65 20.90 73.8 409ur БУ ₁₁ ^{1/2} 3402 3405 2016 год 2016 год 2016 год 2016 год 2016 год 2017 год			перфо	рации,	промыслового исследования	МΠа	конденсата,	конденсата,	г/м ³ (на газ	д.ед.
$409 \text{ur} 5 \text{ y}_{1}^{1/2} 3402 3405 2016 \text{ rov} \begin{array}{c c c c c c c c c c c c c c c c c c c $			ľ	И			cm^3/m^3	г/см ³	сепарации)	
409ur by1,12 3402 3405 28,65 8,9						30,76	Рпл		214,82	0,65
409ur Fy1,1-2 3402 3405 2016 rog 28.56 8.9 0 0 15,80 49.5 0 0 0 0 0 16,80 98,9 0 0 0 0 0 15,80 98,9 0 0 0 0 0 15,80 134,5 0 0 0 0 0 9.10 133,8 0 0 0 0 0 0 4071zjar 559,17 ¹² 3580 3591 2017 rog 28.52 Piia 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>30,90</td> <td>НК</td> <td></td> <td></td> <td></td>						30,90	НК			
409ur БУ1, ^{1/2} 3402 3405 2016 год 26.16 (23.80 49.5) (2000 73.8) (15.60 120.0) 10 409ur БУ1, ^{1/2} 3402 3405 2016 год 15.80 (13.40 130.3) 10 4071zjar БУ1, ^{1/2} 3402 3405 2016 год 13.40 (13.40 130.3) 10 10 4071zjar БУ1, ^{1/2} 3580 3591 2017 год 28.52 (27.15 11K) 101.90 (21.22 38.77) 161.22 0.590 (22.15 11K) 0.590 (21.22 38.77) 4071zjar БУ1, ^{1/2} 3580 3591 2017 год 28.52 Pmr 161.22 0.590 (27.15 11K) 161.22 0.590 (27.15 11K) 407.1zjar БУ1, ^{1/2} 3580 3591 2017 год 15.30 10.190) 10.90 (10.90) 10.10 (10.90) 407.1zjar БУ1, ^{1/2} 3580 3591 2017 год 12.48 (107.77) 10.48 (10.90) 10.90) 407.3 zjar БУ1, ^{1/2} 3764 3773 2016 год 10.48 (8.76.0) 10.90) 10.90) 407.3 zjar 11.51 147.96) 10.91 141.08) 10.91 141.08) 10.93						28,56	8,9			
409ur 5y11 ^{1/2} 3402 3405 2016 rot 2030 90 73 8 409ur 5911 ^{1/2} 3402 3405 2016 rot 115.80 120.0 4071zjar 5911 ^{1/2} 3405 2016 rot 11.50 134.5 4071zjar 5911 ^{1/2} 3580 3591 2017 rot 4071zjar 5911 ^{1/2} 3580 3591 2017 rot <td< td=""><td></td><td></td><td></td><td></td><td></td><td>26.16</td><td>24.4</td><td></td><td></td><td></td></td<>						26.16	24.4			
409ur \$\begin{bmatrix}{\$\mathbf{Fy}_{17}\$^{1/2}\$ 3402 3405 2016 rog \$\begin{bmatrix}{\$15,80\$ & 120,0 & 1.5.80 & 118,4 & 1.5.20 & 128,52 & 1.5.80 & 100,94,0 & 0,7957 & 0.5.90 & 1.5.80 & 118,4 & 1.5.80 & 100,94,0 & 0,7957 & 0.5.90 & 1.5.80 & 100,90 & 1.5.80 & 100,90 & 1.5.80 & 100,90 & 1.5.80 & 100,90 & 1.5.80 & 100,90 & 1.5.80 & 101,90 & 1.5.80						23.80	49.5			
409ur 5y11 ¹² 3402 3405 2016 rog 18,50 98,9						20,90	73.8			
409ur 5У ₁₇ ^{1/2} 3402 3405 2016 rog 2016 rog 400 13.60 13.40 13.30 130.3 13.30 130.3 4071/zjar 55 y ₁₇ ^{1/2} 3405 2016 rog 400 13.63 130.3 130.3 130.3 4071/zjar 55 y ₁₇ ^{1/2} 3580 3591 2017 rog 400 18.4 166.6 160.6 20.0 94.7 161.22 0.590 20.590 20.715 HK 161.22 0.590 24,18 30,01 161.22 0.590 27.15 HK 161.22 0.590 24,18 30,01 161.22 0.590 11.20 12.22 58.77 161.22 0.590 24,18 30,01 161.22 0.590 11.20 14.8 12.22 14.9 161.22 0.590 24,18 30,01 12.33 111.249 16.30 161.22 0.590 12,33 111.249 16.30 101.08 16.27 16.12 16.12 16.12 16.12 16.12 16.12 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>18.50</td><td>98.9</td><td></td><td></td><td></td></t<>						18.50	98.9			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	1-2		. .		15.80	120.0			
$4071z$ $4071z$ $4071z$ $4071z$ $4071z$ $4071z$ $4071z$ $4134ses$ $5Y_{17}^{1-2}$ $5Y_{17}^{1-2}$ 3580 3591 $2017 rot$ $\frac{11,50}{4,80}$ $2017 rot$ $\frac{11,50}{4,80}$ $\frac{11,84}{4,80}$ $\frac{11,11}{4,80}$ $\frac{11,11}{2,49}$ $\frac{11,30}{4,11}$ $\frac{11,24}{4,11}$ $\frac{11,24}{4,10}$ $\frac{11,249}{4,11}$ $\frac{11,249}{4,10}$ $\frac{11,249}{4,11}$ $\frac{11,249}{4,10}$ $\frac{11,249}{4,11}$ $\frac{11,12}{4,90}$ $\frac{11,12}{4,90}$ $\frac{11,12}{4,90}$ $\frac{11,12}{4,90}$ $\frac{11,11}{4,11}$ $\frac{11,12}{4,10}$ $\frac{11,11}{4,10}$ \frac	409ur	БУ ₁₇ г 2	3402	3405	2016 год	13.40	130.3			
$4071 zjar 5Y_{17}^{1-2} 5Y_{17}^{1-2} 3580 3591 2017 roq 12,3 12,4 12,4 12,4 12,4 12,4 12,4 12,4 12,4 12,4 12,3 11,24 12,4 12,3 11,24 12,4 12,3 11,24 12,4 12,3 11,24 12,4 12,3 11,24 12,4 12,3 11,24 12,4 12,3 11,24 12,4 12,3 11,24 12,4 12,3 11,24 12,4 12,3 11,24 12,3 11,24 12,4 12,3 11,24 12,3 11,24 12,3 11,24 12,4 12,3 11,24 12,4 12,3 11,24 12,3 11,24 12,3 11,24 12,3 11,24 12,3 11,24 12,4 12,3 11,24 12,4 12,3 11,24 12,3 11,24 12,4 12,3 11,24 12,4 12,3 12,4 12,4 12,3 12,4 12,4 12,3 12,4 12,4 12,3 12,4 12,4 12,3 12,4 12,4 12,3 12,4 12,4 12,4 12,3 12,4 14,10 14,108 12,15 14,10 14,108 14,10 14,108 $						11 50	134.5		1	
$4071z$ $4071z$ $Fy_{17}^{1.2} 5y_{17}^{1.2} 3580 3591 2017 rot 4071z$ $Fy_{17}^{1.2} 5y_{17}^{1.2} 3580 3591 2017 rot 4071z$ $Fy_{17}^{1.2} 3764 3773 2016 rot 4071z$ $Fy_{17}^{1.2} 3764 3773 2016 rot 4071z$ $Fy_{17}^{1.2} 3726 3735 2016 rot 4071z$ $Fy_{17}^{1.2} 500z$ $Fy_{17}^{1.2} 3726 3735 2016 rot 407z$ $Fy_{17}^{1.2} 50z$ $Fy_{17}^{1.2} 3726 3735 2016 rot 407z$ $Fy_{17}^{1.2} 50z$ $Fy_{17}^{1.2} 3726 3735 2016 rot 400z$ $Fy_{17}^{1.2} 50z$ $Fy_{17}^{1.2} 3726 3735 2016 rot 400z$ $Fy_{17}^{1.2} 50z$ $Fy_{17}^{1.2} 3726 3735 2016 rot 400z$ $Fy_{17}^{1.2} 50z$ $Fy_{17}^{1.2} 50z$ $Fy_{17}^{1.2} 3726 3735 2016 rot 400z$ $Fy_{17}^{1.2} 50z$ $Fy_{17}^{$						9 10	133.8		1	
$4071 \text{zjar} \text{Fy}_{17}^{1-2} 3580 3591 2017 \text{ rog} \begin{array}{c c c c c c c c c c c c c c c c c c c $						7 20	128,3		1	
$4071z jar = 5Y_{17}^{1-2} = 5Y_{17}^{1-2} = 3764 = 3735 = 2016 rot = 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $						4 80	118.4		1	
$4071 zjar = 5Y_{17}^{1-2} = 3580 = 3591 = 2017 rot = 101,22 = 0,590 = 101,290 = 100,$						2 40	106.6			
$4071zjar 5Y_{17}^{1-2} 3580 3591 2017 roat 28,52 Pun 161,22 0,590 24,18 30,01 0,10 $						0.20	94 7			
$4071 \text{zjar} \text{FY}_{17}^{1-2} 3580 3591 2017 \text{ rod} \begin{array}{c c c c c c c c c c c c c c c c c c c $						0.10	94.0	0 7957		
$4071 \text{zjar} \text{Fy}_{17}^{1-2} 3580 3591 2017 \text{ rog} \begin{array}{c c c c c c c c c c c c c c c c c c c $						28.52	Рпл Рпл	0,7957	161.22	0.590
$4071 z j ar 5 y_{12}^{1/2} 5 y_{12}^{1/2} 3580 3591 2017 rog 1 2017 rog 24,18 30,01 21,22 58,77 1 18,26 84,48 1 15,30 101,90 1 21,23 111,24 9,37 112,49 6,41 107,77 6,41 107,77 6,41 107,77 1 3,40 99,27 0 0,10 83,95 0,7926 0,10 82,96 0,7818 0 0 0,10 82,96 0,7818 0 0,10 82,96 0,7818 0 0,10 82,96 0,7818 0 0,10 82,96 0,7818 0 0,10 82,96 0,7818 0 0,10 82,96 0,7818 0 0,10 82,96 0,7818 0 0,10 82,96 0,7818 0 0 0 0,10 82,96 0,7818 0 0 0 0,10 82,96 0,7818 0 0 0,10 82,96 0,7818 0 0 0,10 82,96 0,7818 0 0 0,10 82,96 0,7818 0 0 0,10 82,96 0,7818 0 0 0,10 82,96 0,7818 0 0 0,10 82,96 0,7818 0 0 0,10 82,96 0,7818 0 0 0,10 82,96 0,7818 0 0 0,10 82,96 0,7818 0 0 0,10 82,96 0,7818 0 0 0,10 0,82,96 0,7818 0 0 0,10 0,82,96 0,7818 0 0 0 0,10 0,82,96 0,7818 0 0 0 0,10 0,82,96 0,7818 0 0 0 0,10 0,82,96 0,7818 0 0 0 0 0,10 0,82,96 0,7818 0 0 0 0,10 0,82,96$						20,32	HK I IIV		101,22	0,370
$4071zjar 5Y_{17}^{1-2} 5Y_{17}^{1-2} 3580 3591 2017 roq \begin{array}{ccccccccccccccccccccccccccccccccccc$						27,13	30.01		+	
$4071 \text{zjar} \text{EV}_{17}^{1-2} 3580 3591 2017 \text{ rog} 18,26 \\ 84,48 \\ 15,30 \\ 101,90 \\ 12,33 \\ 112,49 \\ 9,37 \\ 112,49 \\ 0,48 \\ 87,60 \\ 0,10 \\ 83,95 \\ 0,7926 \\ 0,10 \\ 83,95 \\ 0,7926 \\ 0,10 \\ 83,95 \\ 0,7926 \\ 0,10 \\ 83,95 \\ 0,7926 \\ 0,10 \\ 83,95 \\ 0,7926 \\ 0,10 \\ 12,33 \\ 112,49 \\ 0,10 \\ 83,95 \\ 0,7926 \\ 0,10 \\ 12,33 \\ 112,49 \\ 0,10 \\ 12,33 \\ 112,49 \\ 0,10 \\ 12,33 \\ 112,49 \\ 0,10 \\ 12,33 \\ 112,49 \\ 0,10 \\ 12,33 \\ 112,49 \\ 0,10 \\ 12,33 \\ 112,49 \\ 0,10 \\ 12,33 \\ 112,15 \\ 14,796 \\ 0,10 \\ 12,03 \\ 12,15 \\ 14,91 \\ 14,91 \\ 14,108 \\ 12,03 \\ 14,70 \\ 0,10 \\ 9,15 \\ 14,796 \\ 0,10 \\ 9,15 \\ 14,796 \\ 0,10 \\ 9,340 \\ 0,7898 \\ 0,7898 \\ 0,7898 \\ 0,7898 \\ 0,7898 \\ 0,7926 \\ 0,10 \\ 0,$						24,10 21.22	58 77		+	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						18.26	84.48		+	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.0			2017 год	15.30	101.90		+	
$4073z jar 5Y_{17}^{1/2} 3764 3773 2016 roq 4134ses 5Y_{17}^{1/2} 3726 3735 2016 roq 4134ses 4134ses 5Y_{17}^{1/2} 3726 3735 2016 roq 4134ses 4134ses $	4071zjar	БУ ₁₇ ¹⁻²	3580	3591		12.33	111.24		+	
4073zjar БУ17 ¹⁻² 3764 3773 2016 год 30,46 Рпл 211,15 0,650 4073zjar БУ17 ¹⁻² 3764 3773 2016 год 26,33 НК 10 4073zjar БУ17 ¹⁻² 3764 3773 2016 год 20,67 90,45 10 4134ses БУ17 ¹⁻² 3764 3773 2016 год 14,91 141,08 10 4134ses БУ17 ¹⁻² 3726 3735 2016 год 12,03 148,70 10 10 4134ses БУ17 ¹⁻² 3726 3735 2016 год 10,10 93,40 0,7898 10 11,65 100,40 10 10 10 10 10 10 11,65 105,17 10 10 11,86 10 10 11,65 105,17 10 10 10 10 10 10 11,65 105,17 10 10 10 10 10 10 1						937	112.49		-	
4073zjar БУ17 ¹⁻² 3764 3773 2016 год 100,40 0,7926 0,7926 4073zjar БУ17 ¹⁻² 3764 3773 2016 год 122,15 1 1 4073zjar БУ17 ¹⁻² 3764 3773 2016 год 14,91 141,08 1 4134ses БУ17 ¹⁻² 3726 3735 2016 год 12,03 148,70 1 1 4134ses БУ17 ¹⁻² 3726 3735 2016 год 12,03 148,70 1 1 4134ses БУ17 ¹⁻² 3726 3735 2016 год 12,03 148,70 1 1 4134ses БУ17 ¹⁻² 3726 3735 2016 год 12,03 148,70 1 1 4134ses БУ17 ¹⁻² 3726 3735 2016 год 12,03 148,70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						6.41	107.77		+	
$4073zjar = 5Y_{17}^{1-2} = 3764 = 3735 = 2016 rog = 5Y_{17}^{1-2} = 3726 = 3735 = 2016 rog = 2016$						3 40	99.27			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0.48	87.60			
$4073 z jar = 5 y_{17}^{1-2} = 3764 = 3773 = 2016 rog = 3736 = 3736 = 3736 = 3736 = 3736 = 3736 = 3736 = 3736 = 37373 = 2016 rog = 3736 = 37373 = 3736 = 37373 = 2016 rog = 3736 = 37373 = 3736 = 37373 = 2016 rog = 3736 = 37373 = 3736 = 37373 = 2016 rog = 37373 = 3736 = 37373 = 37373 = 37373 = 3736 = 37373 = 37373 = 37373 = 37373 = 37373 = 37373 = 37373 = 3736 = 37373 = 37373 = 37373 = 37373 $						0.10	83.95	0 7926		
$4073 z j ar$ $5 y_{17}^{1-2} = 3764 = 3773$ $2016 rog$ $2000 rog$ $2016 rog$ $2000 rog$			¹⁻² 3764			30.46	<u>Рпл</u>	0,7920	211.15	0.650
$4073zjar = 5Y_{17}^{1-2} = 3764 = 3773 = 2016 rog = 100 rog = 10$						26 33	НК		211,15	0,000
$4073 z j ar = 5 y_{17}^{1.2} = 3764 = 3773 = 2016 rog = 20,67 = 90,45 = 10,10 = 10,1$						23,55	46.70			
$4073 z jar = 5Y_{17}^{1-2} = 3764 = 3773 = 2016 rog = 10, 79 = 122, 15 = 10, 14, 91 = 141, 08 = 10, 148, 70 = 10$						20,67	90.45			
$4073zjar = 5Y_{17}^{1/2} = 3764 = 3773 = 2016 \text{ rog} = \frac{17491}{12,03} = 122,13 = 122,13 = 124,108 = 12$				3773		17 79	122.15			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.2				14.91	141.08			
$4134 \text{ses} \text{Fy}_{17}^{1-2} 3726 3735 2016 \text{ rog} \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4073zjar	БУ ₁₇ ¹⁻²			2016 год	12.03	148 70			
$4134 \text{ses} \text{EV}_{17}^{1-2} 3726 3735 2016 \text{ год} \begin{array}{c c c c c c c c c c c c c c c c c c c $						915	147.96		1	
4134ses БУ ₁₇ ¹⁻² 3726 3735 2016 год 100,40 100,40 196,68 0,67 32,09 Рпл 196,68 0,67 32,09 НК 196,68 0,67 32,09 Рпл 196,68 0,67 32,09 НК 100,40						6.27	138.01		-	
$4134 \text{ses} \text{БУ}_{17}^{1-2} 3726 3735 2016 \ \text{год} \begin{array}{r} 10, 0, 0 \\ 0, 0, 0 \\ 0,$						3 39	122.15		-	
4134ses БУ ₁₇ ¹⁻² 3726 3735 2016 год 32,09 32,09 Рпл 196,68 0,67 4134ses БУ ₁₇ ¹⁻² 3726 3735 2016 год 26,34 26,34 23,65 49,17 31,84 1 1 4134ses БУ ₁₇ ¹⁻² 3726 3735 2016 год 17,86 17,86 90,28 14,96 11,65 105,17 1 1 4134ses БУ ₁₇ ¹⁻² 3726 3735 2016 год 17,86 14,96 101,38 11,65 105,17 1 1 4134ses БУ ₁₇ ¹⁻² 3726 3735 2016 год 17,86 90,28 14,96 101,38 1 1 10,65 105,17 1 1 1 1 1 1 6,14 99,31 1 1 1 1 1 1 3,24 92,72 1						0.51	100.40			
$4134 \text{ses} \text{FY}_{17}^{1-2} 3726 3735 2016 \text{ год} \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						0.10	93.40	0.7898		
$4134 \text{ses} \text{Fy}_{17}^{1-2} 3726 3735 2016 \text{ rog} \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						32.09	Рпл	•,• • • •	196.68	0.67
$4134 \text{ses} \text{FV}_{17}^{1-2} 3726 3735 2016 \text{ rog} \begin{array}{r} 52,99 & 12,57 \\ \hline 29,49 & 12,57 \\ \hline 26,34 & 31,84 \\ \hline 23,65 & 49,17 \\ \hline 20,75 & 70,03 \\ \hline 17,86 & 90,28 \\ \hline 14,96 & 101,38 \\ \hline 11,65 & 105,17 \\ \hline 8,79 & 104,19 \\ \hline 6,14 & 99,31 \\ \hline 3,24 & 92,72 \\ \hline 0,45 & 86,62 \\ \hline 0,10 & 82,96 \\ \hline 0,7818 \\ \end{array}$						32.09	НК		1,0,00	0,07
$4134 \text{ses} \text{FV}_{17}^{1-2} 3726 3735 2016 \text{ rog} \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4134ses					29.49	12.57		1	
$4134 \text{ses} \text{FV}_{17}^{1-2} 3726 3735 2016 \text{ год} \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						26 34	31.84		-	
4134ses $5V_{17}^{1-2}$ 3726 3735 2016 год $20,75$ $70,03$ 17,86 90,28 11,65 105,17 11,65 105,17 104,19 104,19 104,19 6,14 99,31 3,24 92,72 104,19 104,19 104,19 104,19 104,19 104,19 104,19 104,19 104,19 104,19 104,19 104,19 104,19 104,15 104,19 104,19 104,19 104,19 104,19 104,19 104,15 104,19 104,15 104,19 104,15 104,19 104,15 104,15 104,19 104,15						23.65	49.17			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						20.75	70.03			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TTT 1-2				17.86	90.28			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		БУ ₁₇ ¹⁻²	3726	3735	2016 год	14 96	101.38			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						11.65	105.17			
6,14 99,31 3,24 92,72 0,45 86,62 0,10 82,96 0,7818						8.79	104.19		1 1	
3,24 92,72 0,45 86,62 0,10 82,96						6.14	99.31		1 1	
0,45 86,62 0,10 82,96 0,7818						3.24	92.72		1 1	
0,10 82,96 0,7818						0.45	86.62		1 1	
						0,10	82,96	0,7818	1	-

Следует обратить внимание, что давление начала конденсации по всем пробам было ниже

начального пластового давления. Однако, четко выраженных закономерностей в динамиках

давления начала конденсации или конечного коэффициента извлечения конденсата (КИК) по пласту не прослеживается. Возникают сомнения в точности оценки коэффициентов извлечения конденсата еще и потому, что в условиях бомбы PVT не воспроизводятся все физические процессы, которые могут происходить в реальном пласте (учет фильтрационно - емкостных свойств пород, наличие остаточной водонасыщенности и т.д.) [13, 14].

Рис. 5. Кривые дифференциальной конденсации проб скважины 4062ses (в процессе разработки).

Рис. 6. Кривые дифференциальной конденсации проб скважины 4063ses (в процессе разработки).

Эксперименты выполнялись на рекомбинированных сепарационных пробах, составленных с учетом замеренного на месторождении конденсатогазового фактора. При прогнозировании разработки месторождений на основании полученных экспериментальных данных создаются расчетные модели с помощью которых определяются пластовые потери углеводородов, их суммарную добычу и коэффициент извлечения конденсата. Способом дифференциальной конденсации моделируется процесс разработки залежей углеводородов на истощение, где определяются пластовые потери конденсатана весь период разработки месторождения. Полученные экспериментальные параметры являются исходными данными для адаптации прогнозных моделей при проектировании и контроле за разработкой месторождения. Прогнозирование фазового поведения газоконденсатной системы осуществляли на *PVT*- установке при начальных термобарических условиях [15-18].

Таким образом, при повышении пластовых потерь конденсата коэффициент извлечения снизился на 14,5%. В результате полученных данных можно сделать вывод что, на начальной стадии разработки при проведении экспериментальных исследований газоконденсатной системы методом дифференциальной конденсации-прогнозный коэффициент извлечения конденсата составил 0,59 а, при контактно - дифференциальном методе прогнозный КИК – 0,51.

Прогноз пластовых потерь конденсата, выполненный без учета геолого-технических факторов на начальной стадии разработки месторождения, как правило, по различным причинам не выполняется. В этом случае прогнозирование параметров, а также расчеты баланса добычи конденсата проводятся на основании расчетных моделей [9, 10]. О.Ф. Худяковым разработан методический подход для определения суммарно добытого конденсатав условиях разработки газоконденсатных объектов на естественном режиме истощения рассчитывается по формуле

 $q_{\Sigma \sigma \kappa}^{m} = q_{\kappa n \sigma}^{o} \frac{m}{n} - \frac{q_{pk}^{m}}{2n - 2m + 1} - \sum_{m=2}^{m} \frac{4q_{pk}^{m-1}}{[2n - (2i - 3)] \cdot [2n - (2i - 1)]}$ (1), где $q_{\kappa n r}^{m}$ - содержание конденсата в пластовом газе в конце *m-го* этапа; $q_{\kappa n r}^{n}$ - начальное содержание конденсата; т – текущий этап снижения давления в залежи; п – число этапов снижения давления; $q_{p\kappa}^{m}$ – потери конденсата в конце *m-го* периода разработки.

В процессе разработки месторождения прогнозирование добычи конденсата усложняет расчетные модели и вводит возможные коррективы в исходные данные.

Методика корректного прогнозирования пластовых потерь конденсата осуществляется на основе реальных данных, полученных при газоконденсатных исследованиях скважин. Такая задача была рассмотрена институтом ООО «Газпром ВНИИгаз». Пользуясь данной методикой рассмотрим прогноз пластовых потерь конденсата при разработке месторождения по данным промысловых газоконденсатных исследований. Применяя методику оптимизации управляющих параметров, проведено обоснование пластовых потерь углеводородов и выполнена корректировка прогнозирования добычи конденсата. Прогноз изменения количества конденсата в пластовом газе при текущем пластовом давлении определяется по формуле:

$$V_o = V_{\partial o \delta} + V_{ocm} \,, \tag{2}$$

где $V_{\partial o \delta}$ – объем добытого конденсата; $V_{o cm}$ – объем выпавшего в залежи конденсата.

Объем конденсата, оставшегося в пласте, разделим на объем конденсата, находящегося в газовой фазе ($V_{\kappa c \phi}$) и выпавшего при снижении давления в залежи (V_{gun}), т.е.

$$V_o = V_{\partial o \delta} + V_{\kappa z \phi} + V_{\omega b i n} \qquad (3)$$

Общий объем конденсата определяется как

$$V_o = Q_{cyx.e.} * q_0, \qquad (4)$$

где $Q_{cyx.e.}$ – количество «сухого» газа в пласте, м³; q_0 – начальное содержание конденсата в пластовом газе, г/м³.

Объем добытого конденсата ($V_{\partial o \delta}$) представляет собой произведение объема добываемого газа и текущего содержания конденсата при снижении давления от P_n до P на n этапов с

равными отборами газа $\Delta Q_{\partial o \delta}$. Тогда

$$V_{\partial o \delta} = \sum_{i=1}^{n} q_i \Delta Q_{\partial o \delta} \qquad (5)$$

Записывая выражение (4) в интегральной форме, получим:

$$V_{\partial o \delta} = \int_{p+dp}^{3_{\rm H}} q(p) dQ_{\partial o \delta}(p) \tag{6}$$

Объем конденсата, оставшегося в пласте в газовой фазе ($V_{\kappa c \phi}$), – это произведение количества газа, оставшегося в пласте, на текущее содержание конденсата в пластовом газе, поэтому

$$V_{\kappa c \phi} = \left[Q_{cyx.c.} - Q_{\partial o \delta}(p) - Q_{c \kappa}(p) \right] q(p) , (7)$$

где $Q_{_{\mathit{ZBK}}}(p)$ – доля газа, оставшаяся в выпавшем в пласте конденсате.

Объем конденсата, выпавшего в пласте ($V_{sыn}$), представляет собой пластовые его потери. Тогда

$$V_{\rm gam} = q_{\rm nom}(p), \quad (8)$$

где $q_{nom}(p)$ – зависимость пластовых потерь от давления (стабильного конденсата), г/м³.

Запишем уравнение материального баланса конденсата (3) для случая снижения давления в пласте с P_{μ} до P:

$$V_{0} = \int_{p+dp}^{p_{a}} q(p) dQ_{\partial o \delta}(p) + \left[Q_{cyx.e.} - Q_{\partial o \delta}(p) - Q_{cex}(p) \right] q(p) + q_{nom}(p)$$
(9)

Все расчеты проводятся относительно объема газа в залежи, например:

$$\overline{Q}_{\partial o \delta} = \frac{Q_{\partial o \delta}}{Q_{cyx.2.}} \quad (10)$$

Формула материального баланса в интегральной форме при переходе к относительным отборам газа имеет вид

$$V_{0} = \int_{p+dp}^{p_{u}} q(p) d\overline{Q}_{\partial o \delta}(p) + \left[1 - \overline{Q}_{\partial o \delta}(p) - \overline{Q}_{\mathcal{I} \mathcal{B} \kappa}(p)\right] q(p) + q_{nom}(p)$$

$$(11)$$

где q_0 – начальное содержание конденсата в пластовом газе из расчета на 1 м³ «сухого» газа; $\overline{Q}_{\partial o \delta}(p)$ – относительное количество добытого газа; q(p) – текущее содержание конденсата в пластовом газе; $\overline{Q}_{_{26K}}(p)$ – доля газа в выпавшемконденсате в залежи; $q_{nom}(p)$ – пластовые потери.

Решая уравнение (11) относительно неизвестного текущего содержания конденсата в пластовом газе и получим формулу для прогнозирования:

$$q(p) = \frac{q_0 - \int_{p+dp}^{p_n} q(p) d \overline{Q}_{\partial o \delta}(p) - q_{nom}(p)}{\left[1 - \overline{Q}_{\partial o \delta}(p) - \overline{Q}_{\mathcal{I} \delta \kappa}(p)\right]}.$$
(12)

Основной задачей исследований для реализации вышеприведенного уравнения является поиск зависимостей $\overline{Q}_{doo}(p)$, $q_{nom}(p)$ и $\overline{Q}_{cek}(p)$ от изменения текущего пластового давления в залежи.

За критерий оптимальности принимается величина абсолютного или относительного расхождения фактических и полученных в результате решения задачи значений динамических функций.

В данном случае поиск оптимизационного решения выполнен по следующей формуле:

$$J = \sum m_i (q_{pacy}^{p(i)} - q_{\phi a \kappa m}^{p(i)})^2 \to \min, \quad (13)$$

где $q_{pacy}^{p(i)}$ – расчетное (12) содержание конденсатав

пластовом газе; $q_{\phi a \kappa m}^{p(i)}$ – фактическое содержание конденсата в пластовом газе. Искомыми величинами (или параметрами) управления для задачи восстановления газоконденсатной системы рассчитаем коэффициенты в полиноминаль-

ном уравнении, описывающем пластовые потери конденсата.

Результат экспериментальных исследований показывает, что пластовые потери достаточно точно описываются полиномом третьей степени. Исходя из вышеназванных допущений, задача идентификации может быть определена для данного случая следующей системой уравнений:

$$\begin{cases} \frac{\partial J}{\partial A} = \frac{\partial \left[\sum m_i \left(q_{pacu}^{p(i)} - q_{\phi a \kappa m}^{p(i)}\right)^2\right]}{\partial A} = 0\\ \frac{\partial J}{\partial B} = \frac{\partial \left[\sum m_i \left(q_{pacu}^{p(i)} - q_{\phi a \kappa m}^{p(i)}\right)^2\right]}{\partial B} = 0\\ \frac{\partial J}{\partial C} = \frac{\partial \left[\sum m_i \left(q_{pacu}^{p(i)} - q_{\phi a \kappa m}^{p(i)}\right)^2\right]}{\partial C} = 0\\ Ap_{\mu\kappa}^3 - Bp_{\mu\kappa}^3 + Cp_{\mu\kappa} + D = 0 \end{cases}$$
(14)

где

Рис. 7. Кривые функции потерь углеводородов в пласте при разработке месторождения.

Оптимизационная задача была реализована с помощью линейного программирования. Результатом расчета явилась оптимизированная функция пластовых потерь конденсата, приведенная на рисунке 7.

Так, предложенный метод ООО «Газпром ВНИИгаз», основанный на решении оптимизационной задачи, может быть использован для прогнозирования пластовых потерь конденсатана разных стадиях разработки месторождений.

Литература / References:

sate in the reservoir gas. Academic Journal of Western Siberia. 2014; 10 (1): 118-119.] (In Russ)

- Александрова Е.М, Иванова М.С., Инякина Е.И., Катанова Р.К, Томский К.О. Изучение характеристики нефти двухфазных залежей. Материалы Всероссийской молодежной научной конференции с участием иностранных ученых. Новосибирск, 2019. [Alexandrova E.M., Ivanova M.S., Inyakina E.I., Katanova R.K., Tomsky K.O. Studying the oil characteristics of two-phase deposits. Materials of the All-Russian Youth Scientific Conference with the participation of foreign scientists. Novosibirsk, 2019.] (In Russ)
- 3. Петрова Д.А., Катанова Р.К., Инякина Е.И., Иванова М.С. Оценка пластовых потерь углеводородов в условиях разработки нефтегазоконденсатных месторождений. Материалы Всероссийской молодежной научной конференции с участием иностранных ученых. Новосибирск, 2019: 265-268. [Petrova D.A., Katanova R.K., Inyakina E.I., Ivanova M.S. Assessment of reservoir losses of hydrocarbons in the development of oil and gas condensate fields. Materials of the All-Russian Youth Scientific Conference with the participation of foreign scientists. Novosibirsk, 2019: 265-268.] (In Russ)
- Инякина Е.И., Захарова М.Р., Катанова Р.К., Томская В.Ф., Александрова Е.М. Исследование недонасыщенных по фазовому состоянию газоконденсатных залежей. *Научный форум. Сибирь.* 2019; 5 (1): 13-14. [Inyakina E.I., Zakharova M.R., Katanova R.K., Tomskaya V.F., Alexandrova E.M. The study of phase-unsaturated gas condensate deposits. *Scientific forum. Siberia.* 2019; 5 (1): 13-14.] (In Russ)
- 5. Краснов И.И., Михеева В.А., Матвеева М.В. Эспериментальные исследования фазового поведения многокомпонентных газоконденсатных систем. Известия высших учебных заведений. Нефть и газ. 2006; 2: 21-26. [Krasnov I.I., Mikheeva V.A., Matveeva M.V. Experimental studies of the phase behavior of multicomponent gas condensate systems. News of higher educational institutions. Oil and gas. 2006; 2: 21-26.] (In Russ)
- 6. Катанова Р.К., Мараков Д.А. Влияние наличия жидкости в продукции скважин на показатели разработки газоконденсатных месторождений. Материалы IX Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых «Молодежь и научно-технических прогресс с в современном мире». М.: Изд-во «Перо», 2018: 186. [Katanova R.K., Marakov D.A. The influence of the presence of fluid in the production of wells on the development indicators of gas condensate fields. Materials of the IX All-Russian Scientific and Practical Conference of Students, Graduate Students and Young Scientists "Youth and Scientific and Technical Progress in the Modern World". M.: Publishing House Pero, 2018: 186.] (In Russ)
- 7. Захарова М.Р., Инякина Е.И., Иванова М.С., Томская В.Ф. Изучение свойств газоконденсатных систем находящихся в условиях аномально высокого пластового давления. В сб.: Трофимуковские чтения – 2019. Материалы Всероссийской молодежной научной конференции с участием иностранных ученых. 2019: 285-288. [Zakharova M.R., Inyakina E.I., Ivanova M.S., Tomskaya V.F. Studying the properties of gas condensate systems under conditions of abnormally high reservoir pressure. In the collection: Trofimukov readings – 2019 Materials of the All-Russian Youth Scientific Conference with the participation of foreign scientists. 2019: 285-288.] (In Russ)
- Краснова Е.И., Островская Т.Д., Краснов И.И., Радченко В.В. Геолого-технические факторы, влияющие на текущие значения коэффициента конденсатоогдачи. Академический жсурнал Западной Сибири. 2012; 6: 65-66. [Krasnova E.I., Ostrovskaya T.D., Krasnov I.I., Radchenko V.V. Geological and technical factors affecting the current values of the coefficient of condensate transfer. Academic Journal of Western Siberia. 2012; 6: 65-66.] (In Russ)
- Томская В.Ф., Александрова Е.М., Краснов И.Й., Катанова Р.К. Обоснование режимов и условий эксплуатации скважин на Среднеботуобинском месторождении. Научный форум. Сибирь. 2019; 1: 11-12. [Tomskaya V.F., Aleksandrova E.M., Krasnov I.I., Katanova R.K. Substantiation of well operation conditions and conditions at the Srednebotuobinsky field. Scientific forum. Siberia. 2019; 1: 11-12.] (In Russ)
- 10. Йноземцева А.А., Инякин В.В., Краснов И.И. и др. Мероприятия по увеличению производительности скважин и ограничению притока пластовых вод. *Материалы всероссийской конференции*. 2015: 90-94. [Inozemtseva А.А., Inyakin V.V., Krasnov I.I. and others. Measures to increase well productivity and limit inflow of formation water. *Materials of the All-Russian Conference*. 2015: 90-94.] (In Russ)
- Краснова Е.И., Грачев С.И., Краснов И.И., Лапутина Е.С. Особенности прогнозирования РVТ-свойств в процессе разработки газоконденсатных залежей. Академический журнал

Ваганов Е.В., Краснова Е.И., Краснов И.И., Мараков Д.А., Зотова О.П. Изучение зависимости конденсатоотдачи от содержания конденсата в пластовом газе. Академический журнал Западной Сибири. 2014; 10 (1): 118-119. [Vaganov E.V., Krasnova E.I., Krasnov I.I., Marakov D.A., Zotova O.P. The study of the dependence of condensate on the content of conden-

Западной Сибири. 2013; 9 (1): 58-60. [Krasnova E.I., Grachev S.I., Krasnov I.I., Laputina E.S. Features of predicting RVT properties in the process of developing gas condensate deposits. Academic Journal of Western Siberia. 2013; 9 (1): 58-60.] (In Russ) 12. Инякин В.В., Иноземцева А.А., Краснов И.И. и др. Современ-

- 12. Инякин В.В., Иноземцева А.А., Краснов И.И. и др. Современные технологии повышения производительности скважин, эксплуатирующие газовые и газоконденсатные залежи. В сб.: Техника и технология строительства и ремонта нефтяных и сазовых скважин. 2015: 158-163. [Inyakin V.V., Inozemtseva A.A., Krasnov I.I. and others. Modern technologies for increasing the productivity of wells operating gas and gas condensate deposits. In the collection: Technique and technology for the construction and repair of oil and gas wells. 2015; 158-163.] (In Russ)
- Краснов И.И., Островская Т.Д., Краснова Е.И и др. Особенности прогнозирования конденсатоотдачи на оборудовании фирмы Chandler Engineering. *Академический журнал Западной Сибири.* 2012; 7 (6): 64-65. [Krasnov II, Ostrovskaya TD, Krasnova E.I. et al. Features of predicting condensate return on equipment from Chandler Engineering. *Academic Journal of Western Siberia.* 2012; 6: 64-65.] (In Russ)
 Краснов И.И., Забоева М.И., Краснова Е.И., Винокурова
- 14. Краснов И.И., Забоева М.И., Краснова Е.И., Винокурова Н.К. Совершенствование подходов к описанию термодинамических свойств пластовых флюидов для моделирования процессов разработки. *Геология, география и слобальная* энергия. 2007; 4: 71-73. [Krasnov I.I., Zaboeva M.I., Krasnova E.I., Vinokurova N.K. Improving approaches to the description of the thermodynamic properties of reservoir fluids for modeling

development processes. *Geology, geography and global energy.* 2007; 4: 71-73.] (In Russ)

- Краснов И.И., Самуйлова Л.В., Сивков П.В., Зотова О.П. Особенности экспериментальных исследований многокомпонентных систем на PVT-установке Chandler Engineering. *Академический журнал Западной Сибири.* 2013; 9 (5): 104-105. [Krasnov I.I., Samuylova L.V., Sivkov P.V., Zotova O.P. Features of experimental studies of multicomponent systems on the Chandler Engineering PVT installation. *Academic Journal of Western Siberia.* 2013; 9 (5): 104-105.] (In Russ)
 Краснова Е.И. Влияние конденсационной воды на фазовые
- 16. Краснова Е.И. Влияние конденсационной воды на фазовые превращения углеводородов на всех этапах разработки. Известия высших учебных заведений. Нефть и газ. 2012; 6: 44-47. [Krasnova E.I. The effect of condensation water on the phase transformations of hydrocarbons at all stages of development. News of higher educational institutions. Oil and gas. 2012; 6: 44-47.] (In Russ)
- Томская В.Ф., Инякин В.В., Томский К.О., Краснов И.И. Особенности выработки запасов нефти на месторождениях Республики Саха (Якутии). Сб.: Состояние, тенденции и проблемы развития нефтегазового потенциала Западной Сибири. 2018: 79-86. [Tomskaya V.F., Inyakin V.V., Tomsky K.O., Krasnov I.I. Features of the development of oil reserves in the fields of the Republic of Sakha (Yakutia). Collection: Status, trends and problems of development of the oil and gas potential of Western Siberia. 2018: 79-86.] (In Russ)

PREDICTION PROCEDURE FOR THE CURRENT CONDENSATE CONTENT AND LOSS OF HYDROCARBONS IN THE FORM

E.I. Inyakina, R.K. Katanova, M.D.Z. Alshaykhli Tyumen Industrial University, Tyumen, Russia North-Eastern Federal University. M.K. Ammosova, Polytechnic Institute (branch), Mirny, (Sakha) Yakutia; rose941101@mail.ru Kirkuk University, Kirkuk, Iraq

Abstract:

The purpose of the study: prediction of reservoir condensate losses and condensation onset pressure dynamics during the development of a production facility. Determination of condensate loss from the results of experimental studies of the hydrocarbon reservoir system in PVT plants or based on analytical methods, without taking into account the porous medium and provided below the initial reservoir pressure in the reservoir. Materials: Initial thermodynamic and physicochemical properties of the condensate were studied using samples taken at the Vostochno-Urengoyskoye + Severo-Esetinskoye field during initial field gas condensate loss curves were constructed for the current period of development of the reservoir by differential condensate losses at different stages of field development and determine the current pressure of condensation onset, the «Gazprom VNIIgaz» method was tested based on the solution of the optimization problem.

Keywords: condensate, condensation onset pressure, condensate recovery coefficient, reservoir development, saturated condensate, condensate loss

Вклад авторов:

Е.И. Инякина: разработка дизайна исследования, написание текста рукописи, редактирование текста рукописи; *Р.К. Катанова:* написание текста рукописи, редактирование текста рукописи; *М.Д.З. Альшейхли:* написание текста рукописи, редактирование текста рукописи.

Authors' contributions:

E.I. Inyakina:developing the research design, article writing, article editing;R.K. Katanova:article writing, article editing;M.D.Z. Alshaykhli:article writing, article editing.

Финансирование: Исследование не имело финансовой поддержки. Financing: The study was performed without external funding.

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов. Conflict of interest: The authors declare no conflict of interest.

Статья поступила / Article received: 12.09.2019. Принята к публикации / Accepted for publication: 11.12.2019.

Для цитирования: Инякина Е.И., Катанова Р.К., Альшейхли М.Д.З. Методика прогнозирования текущего содержания конденсата и потерь углеводородов в пласте. *Нефть и газ: опыт и инновации.* 2019; 3 (2): 20-41.

For citation: Inyakina E.I., Katanova R.K., Alshaykhli M.D.Z. Prediction procedure for the current condensate content and loss of hydrocarbons in the form. *Petroleum and gas: experience and innovation (Russia)*. 2019; 3 (2): 20-41. (In Russ)

УДК 622.276

© Коллектив авторов, 2019

ИССЛЕДОВАНИЕ СВОЙСТВ ГАЗОКОНДЕНСАТНЫХ ФЛЮИДОВ В УСЛОВИЯХ РАЗРАБОТКИ САМБУРГСКОГО МЕСТОРОЖДЕНИЯ

Д.А. Мараков, В.В. Инякин, С.К. Грачева, Р.К. Катанова

ФГБОУ ВО «Российский государственный университет нефти и газа (Национальный исследовательский университет) им. И.М. Губкина», г. Москва, Россия

ФГБОУ ВО «Тюменский индустриальный университет», г. Тюмень, Россия

ФГБОУ ВО Северо-Восточный федеральный университет им. М.К. Аммосова, Политехнический институт (филиал), г. Мирный, (Саха) Якутия

RESEARCH OF PROPERTIES OF GAS-CONDENSATE FLUIDS UNDER CONDITIONS OF DEVELOPMENT OF SAMBURG DEPOSIT

D.A. Marakov, V.V. Inyakin,	Russian State University of Oil and Gas (National Research University) named after IM Gubkin, Moscow, Russia
S.K. Gracheva, R.K. Katanova	North-Eastern Federal University, Tyumen, Russia North-Eastern Federal University. M.K. Ammosova, Polytechnic Institute (branch) of Mirny, (Sakha) Yakutia

Контактная информация:

Мараков Денис Александрович – кандидат технических наук (SPIN-код: 6111-3167; ResearcherID: А-7275-2018; ORCID iD: 0000-0002-0867-0901). Место работы и должность: доцент кафедры «Разработки и эксплуатации газовых газоконденсатных месторождений» ФГБОУ ВО «Российский государственный университет нефти и газа (Национальный исследовательский университет) им. И.М. Губкина». Адрес: Россия, 119991, г. Москва, Ленинский проспект, 65. Телефон: +7 (499) 507-88-88. Электронный адрес: com@gubkin.ru

Инякин Владислав Витальевич – магистр (SPIN-код: 8865-7273; ResearcherID: A-1091-2018; ORCID iD: 0000-0002-5205-2676). Место работы и должность: ассистент кафедры «Разработки и эксплуатации нефтяных и газовых месторождений» ФГБОУ ВО «Тюменский индустриальный университет». Адрес: Россия, 625000, г. Тюмень, ул. Володарского, 36. Телефон: +7 (3452) 28-30-27.

Грачева Светлана Камиловна – кандидат технических наук (ResearcherID: A-9013-2020; ORCID iD: 0000-0003-3671-2133). Место работы и должность: доцент кафедры «Разработки и эксплуатации нефтяных и газовых месторождений» ФГБОУ ВО «Тюменский индустриальный университет». Адрес: Россия, 625000, г. Тюмень, ул. Володарского, 36. Телефон: +7 (3452) 28-30-27.

Катанова Розалия Кирилловна – магистр (SPIN-1888-3149; ORCIDidentifier-0000-0003-3815-4550; ResearcherID-AAA-9825-2020). Место работы и должность: ассистент кафедры «Нефтегазовое дело» ФГБОУ ВО Северо-Восточный федеральный университет им. М.К. Аммосова, (филиал) МПТИ г. Мирный, (Саха) Якутия. Адрес: Россия, 678170, Республика Саха (Якутия), г. Мирный, ул. Ойунского, 14. Телефон: +7 (41136) 4-30-73, 4-59-38, электронный адрес: umo_mir@mail.ru, rose941101@mail.ru

Цель исследования: оценка литературных источников, изучение современной стратеги проведения комплекса исследований скважин, изучение фильтрационно-емкостных характеристик коллекторов газоконден-сатных залежей пластов $\mathbf{БY}_{10}^{1-2}$, $\mathbf{\overline{5Y}_{12}}^{1-1}$, $\mathbf{\overline{5Y}_{12}}^{1-2}$, $\mathbf{\overline{5Y}_{12}}^{2-1}$, $\mathbf{\overline{5Y}_{13}}^{1}$, $\mathbf{\overline{5Y}_{14}}^{1}$, $\mathbf{\overline{5Y}_{16}}^{0}$, $\mathbf{\overline{5Y}_{16}}^{1-2}$, $\mathbf{\overline{5Y}_{16}}^{1-3}$, $\mathbf{\overline{5Y}_{17}}^{1-1}$. Материалы: В контуре залежей продуктивные пласты охарактеризованы испытанием 55 скважин 187 объектов, из которых в 55 объектах получены газоконденсатные притоки и в 11 – смешанные притоки газоконденсата с другими флюидами (нефть, пластовая вода). Исследования проводились как в открытом стволе скважины в процессе бурения, так и в эксплуатационной колонне. Опробование в процессе бурения комплектом испытательных инструментов на трубах типа КИИ-146 и КИИ-95-СевКавНИИ проведено в 7 объектах (в 3 получены притоки газоконденсата). Результаты: По результатам исследования на стационарных режимах определялись дебиты и забойные давления на различных режимах. Строились индикаторные диаграммы, а также преобразованные графики зависимости, из которых определялись коэффициенты фильтрационного сопротивления «а» и «b», а затем абсолютно-свободный дебит газоконденсатной смеси, а также оценивалось наличие жидкости на забое скважины. В объектах, где в призабойной части скважины находился столб жидкости. Дебит газоконденсатной смеси замерялся с помощью ДИКТа. Сменой диаметра шайбы на прувере осуществлялся переход от одного режима к другому после стабилизации давления на прувере и устье скважины. По результатам обработки КВД методом касательной или Хорнера рассчитывалась гидропроводность пласта. Выводы: Применение ГРП на низкопроницаемых коллекторах ачимовской толщи Самбургского лицензионного участка позволяет увеличить продуктивность скважин и получить больше кондиционных результатов газоконденсатных исследований. Использование сепарационных комплексов высокой пропускной способности приводит к занижению промыслового конденсатогазового фактора.

Ключевые слова: гидродинамические исследования скважин, фильтрационно-емкостные характеристики коллекторов, газоконденсатные залежи пластов, стационарный режим, дебиты скважины, забойное давление, индикаторные диаграммы

На современном этапе известны научнообоснованные рекомендации по применению системного подхода при определении коэффициента извлечения запасов в условиях эксплуатации залежей нефтегазоконденсатных месторождений. В результате исследований по определению коэффициента извлечения таких залежей установлено, что реальное содержание запасов при разработке на режиме истощения пластовой энергии не соответствует проектным значениям, обоснованным экспериментальными данными. Для исключения подобной системной ошибки необходимо выявление горногеологических особенностей, оказывающих влияние на величину коэффициента извлечения запасов. Изучаемое месторождение расположено на Самбургском лицензионном участке, в пределах которого также находятся Северо-Есетинское, Восточно-Уренгойское, Северо-Пуровское и частично Уренгойское месторождения. Лицензия на разработку Самбургского участка принадлежит ОАО «АРКТИК-ГАЗ», 100%-му дочернему обществу ООО «СеверЭнергия». Испытание скважин на Самбургском месторождении велись Уренгойской НГРИС, входящей в состав ПГО «Уренгойнефтегазгеология». Большинство скважин обсажено эксплуатационной колонной, которая цементировалась в интервалах залегания нефтегазоносных пластов. Опробование и испытание проводилось с установок: БУ-125, БУ-125-БД, БУ-3Д, УЗТМ-3Д, Уралмаш-3Д-67, Уралмаш-4Э, А-50, А-50У, УПТ-50, «Бакинец», Азинмаш-43-А. Эксплуатационная колонна обвязывалась с технической колонной головкой (ООК-2-146х219х324-350, 5"х8"12"-350 «Кымпина», ИМС 219-146-350, АКФ 3-65х350, ЗПК-125-350). Герметичность колонны проверялась снижением уровня жидкости до глубины 680-1003 м и гидравлической опрессовкой внутренним давлением (путем нагнетания технической воды или глинистого раствора) на 22,0-27,5 МПа. Если за 30 мин давление падало меньше, чем на 0,5 МПа, колонна считалась герметичной. После шаблонирования колонны, оборудования устья скважины и опрессовки выполнялась перфорация интервала пласта, намеченного к испытанию. Колонна перед перфорацией заполнялась раствором с удельным весом, обеспечивающим противодавление на пласт, и оборудовалась перфорационной задвижкой, опрессованной на герметичность под давлением, равным полуторократному предполагаемому рабочему давлению. Прострел колонны производился кумулятивными перфораторами ПКС-80, ПР-43, ПР-54, ПКС-

105, ПКО-89, ЗПК-89, ПКО-73, а также гидропескоструйными перфораторами. Вслед за прострелочными работами производился спуск 2" и 2 ¹/₂" насосно-компрессорных труб (НКТ) до уровня верхних дыр интервала перфорации. Вызов притока осуществлялся снижением противодавления на пласт. В процессе освоения фонтанирующих скважин, после полной очистки ствола скважины от технической воды и восстановления давлений до стабильных, газоконденсатные и газоконденсатноводяные объекты исследовались в соответствии с утвержденной инструкцией, составленной ООО «Газпром ВНИИГазом».

Исследования проводились на стандартных режимах фильтрации методом противодавлений путем отработки скважины на одном до 12 режимах прямого или обратного хода (dд=4,6-26,0 мм) при депрессиях 0,74-29,52 МПа, затем на неустановившихся режимах фильтрации для записи кривой восстановления давления и замера пластового давления с последующим определением коэффициента гидропроводности пласта. Низкие фильтрационноемкостные свойства коллекторов во многом обусловили низкую производительность скважин. Опробование низкопродуктивных объектов проводилось при глубоких депрессиях (ДР=10,0 до 29,5 МПа) в условиях двухфазной фильтрации в призабойной зоне пласта. По результатам исследования на стационарных режимах определялись дебиты и забойные давления на различных режимах. Строились индикаторные диаграммы в координатах Рпл²-Рзаб²=f(Q), а также преобразованные графики зависимости $\frac{\Delta P^2}{Q} = f(Q)$, из которых определя-

лись коэффициенты фильтрационного сопротивления «а» и «b», а затем абсолютносвободный дебит газоконденсатной смеси, а также оценивалось наличие жидкости на забое скважины. В объектах, где в призабойной части скважины находился столб жидкости, уходящей в пласт, при её остановке индикаторная диаграмма перестраивалась в координатах:

$$(P_{nn}^2 - P_{3a6}^2) - C = f(Q) \ \text{i} \ \frac{\Delta P^2 - C}{Q} = f(Q) \ (1.1)$$

Дебит газоконденсатной смеси замерялся с помощью ДИКТа. Сменой диаметра шайбы на прувере осуществлялся переход от одного режима к другому после стабилизации давления на прувере и устье скважины. По результатам обработки КВД методом касательной или Хорнера рассчитывалась гидропроводность пласта. Коэффициент гидропроводности определялся по формуле:

$$\frac{kh}{\mu} = \frac{42.4 * Q_0 * T_{\pi\pi} * Z_{\pi\pi} * Pam}{T_{cm} * \beta}, (1.2)$$

где: Q₀ – дебит газа перед остановкой скважины, тыс. м³/сут; T_{пл}, T_{ст} – пластовая и стандартная температуры (Тст = 273 ⁰K); β – угловой коэффициент, определенный по КВД; P_{ат} – атмосферное давление, кгс/см²; Z_{пл} – коэффициент сверхсжимаемости при пластовой температуре и давлении; Kh/µ – гидропроводность пласта, Дм/сПз.

На большинстве объектах были проведены исследования на конденсатность, в результате которых был замерен выход конденсата после разделения газоконденсатной смеси на сепараторах гравитационного типа и рассчитаны дебиты сырого, стабильного конденсата и газа сепарации. Проведена проверка и переработка исходных материалов по всем газоконденсатным объектам. Расчет фильтрационных коэффициентов «а» и «b» в предоставленных актах по испытанию скважин выполнен в большинстве случаев корректно. Приведенные величины большинства коэффициентов либо совпали с полученными данными при переобработке, либо имели несущественные различия (в пределах допустимой погрешности). Поэтому за результирующие приняты параметры, отраженные в актах за исключением трех скважин: 193, 206 и 207, в которых приняты параметры после нашей интерпретации индикаторных диаграмм. Так в скважине 193 (пласт БУ₁₄², интервал 3252-3262 м) в акте испытания по графику неверно определены коэффициенты «а» и «b». В скважине 206 (пласт БУ₁₃¹, интервал 3159-3165 м) при обработке индикаторной диаграммы использован С₀=78537 (отрезок, отсекаемый на оси P^2), а не 33000 как в акте испытания. В скважине 207 (пласт Б Y_{14}^{1} , интервал 3222-3227 м) при первичных исследованиях, в акте испытания неверно рассчитан коэффициент С, учитывающий столб жидкости в призабойной зоне скважины [1, 2, 3].

Результаты обработки КВД проверялись с помощью программных комплексов Weltest-200, Raptor. По билогарифмическим графикам ΔP – lnt и d ΔP /dlnt – t проведена диагностика режимов фильтрации и на основании этого на графике ΔP – lnt выбирался участок с радиальным течением, по которому определены коэффици-

енты гидропроводности и проницаемости по общепринятой методике. В результате интерпретации полученных графиков видно, что обработка КВД по некоторым объектам проведена неверно. В ходе исследования пласта БУ₁₀¹⁻² в скважине 211, БУ₁₀¹⁻² в скважинах 159, 162, 178 и пласта БУ₁₄¹ в скважине 216 была произведена непродолжительная запись КВД, что, исходя из анализа полученных графиков, оказалось не достаточно, чтобы скважина вышла на радиальный приток. При обработке КВД данные по которым приведены в актах испытания в скважинах 165, 169 пласта БУ₁₀¹⁻ ², скважине 207 пласта БУ₁₄¹ (ОПЭ 1988 г.) и скважинах 154, 168 пласта БУ₁₄¹ коэффициент гидропроводности рассчитан неверно. Полученные при переобработке значения гидропроводности значительно меньше, чем в актах испытания. Таким образом, в качестве результирующих приняты значения, полученные после пересчёта. Исходя из гидропроводности пласта, рассчитывалась фазовая проницаемость пласта по реальному газу в пластовых условиях. А по представленным в актах значениям фильтрационного коэффициента «а» - удельная продуктивность. Коэффициент пьезопроводности был рассчитан, с учётом полученных значений проницаемости пласта, по следующей формуле:

$$\chi = \frac{k * P n \pi}{m^* \mu}, \quad (1.3)$$

где: χ – коэффициент пьезпроводности м²/с; k – проницаемость пласта, Д; P_{nn} – пластовое давление, атм; m – пористость, доли единицы; μ – вязкость газа, сПз.

ГКИ проводились после стандартных исследований. При этом скважину переключали в работу через гравитационный сепаратор, где поддерживались постоянные давление и температура. Давление в сепараторе задавалось с помощью постоянной диафрагмы, установленной на ДИКТе. В сепараторе происходило разделение газовой и жидкой фаз. Количество выделившегося насыщенного конденсата определялось по времени заполнения тарированного объёма сепаратора. Дебит отсепарированного газа измерялся с помощью 50 мм ДИКТа. В процессе исследования отбирались глубинные и поверхностные пробы газа, конденсата и воды для определения их физико-химических свойств. Глубинные пробы отбирались пробоотборниками ПД-3М, ВПП-300, для конденсата использовались КЖ. Для большей части скважин, в которых были получены газоконденсатные притоки, отмечалось гидратообразование (скважины номер 165, 166, 168, 169,170, 171, 177, 178, 188, 192, 206, 212) и парафиногидратообразование в НКТ и отводах (скважины номер 193, 221). Для предотвращения гидратообразования использовали закачку горячего хлористого кальция, а для предотвращения парафиногидратообразования закачивался горячий конденсат. Замеры забойных и пластового давлений производились манометрами МГН-2-400, МГН-600, МГИ-2-400, забойной и пластовой температуры – максимальными ртутными термометрами. В некоторых объектах пластовое и забойные давления рассчитывались по устьевым давлениям по неподвижному столбу газа [4, 5,6].

Для определения начальных пластовых давлений залежей производился пересчет пластовых давлений на середину объема залежей. Начальные пластовые давления для каждой залежи определялись как среднеарифметические значения приведенных давлений. Давление закономерно возрастает с глубиной. В скважине 193 при совместном испытании пласта Б Y_{16}^{0} и Б Y_{16}^{1-2} зафиксировано аномально высокое пластовое давление, которое составило 34,78 МПа на абсолютной отметке 3307,6 м. Всего в 55 скважинах Самбургского месторождения пласты, в которых получены притоки газоконденсата испытаны в 66 объектах. Для определения гидродинамических характеристик этих пластов использовались результаты исследований 59 газоконденсатных объектов. Притоки газоконденсата при испытании пласта ${\rm БY}_{10}^{1-2}$ получены в 3 в скважинах 177, 196 и 211, что не противоречит характеристике по ГИС. Дебиты газоконденсатной смеси изменяются от 81,4 (скважина № 196) до 187,6 (скважина № 177) тыс. м³/сут на 10 мм диафрагме при депрессии на пласт 13,97-15,15 МПа, дебиты газа сепарации – от 77.3 и 164,9 тыс. M^3/cyt , конденсата – от 11 до 12,9 м³/сут на 8-10 мм штуцере. При исследовании пласта БУ₁₀¹⁻² в скважине 196 первоначально получен приток газоконденсата с пластовой водой. После проведения ремонтно-изоляционных работ (РИР) на скважине приток пластовой воды удалось изолировать. Пластовое давление по залежи принято 29,24 МПа. Результат замера пластового давления по скважине№ 211 при расчете начального пластового давления для залежи не учитывался, пластовое давление недовосстановлено. Фильтрационные коэффициенты «а»

и «b» приняты по данным обработки индикаторных диаграмм приведённых в актах. Средние значения коэффициентов по залежи составили: «а» – 2,6021 МПа²*сут/тыс. м³, «b» – 0,0241 (МПа*сут/тыс. $м^3$)², удельной продук-тивности – 0,1697 m^3 /сут/МПа²×м. Кривая восстановления давления по скважине 211 не вышла на радиальный приток и пластовое давление является недовосстановленным. В скважине №196 запись КВД является некачественной и обработке не подлежит. В скважине №177 КВД не обрабатывалась из-за гидратообразования, пластовое давление для расчетов было принято условно. Вследствие того, что при ГДИ пласта БУ101-2 КВД не обрабатывались, следовательно, и параметры гидропроводности, проницаемости и пьезопроводности не рассчитывались.

Фонтаны газоконденсата при исследовании в районах скважин № 165, 166, пласта ${\rm FY}_{10}^{1-2}$ получены в 11 скважинах, что не противоречит характеристике по ГИС. При испытании пласта в 5 объектах скважин №№156, 166, 178, 194 и 212 получены низкопродуктивные притоки дебиты газоконденсатной смеси в которых не превышают 100 тыс. м³сут (минимальный дебит газоконденсата получен в скважине 194, который составил 25,1 тыс. м³/сут на диафрагме 19,8 мм). Кроме того, в скважинах 166, 178 и 212 устьевые давления значительно занижены вследствие низких дебитов скважин и образования столба жидкости на забое скважины. В скважинах №№ 159, 160, 162, 165, 177 и 195 дебиты газоконденсатной смеси изменяются от 113,5 (скважина № 162) до 271,2 (скважина № 165) тыс. м³/сут на 10 мм диафрагме. При исследовании пласта БУ₁₀¹⁻² в скважине 194 в интервале 2991-2998 м первоначально получен приток пластовой воды, вследствие вскрытия водонасыщенной части пласта БУ₁₀¹⁻² (в интервале 2995,2-2998,6 м). После проведения ремонтно-изоляционных работ (РИР), повторной перфорации газонасыщенной кровли пласта БУ10¹⁻² в интервале 2984-2988 м и исследовании при помощи КИИ-95 получен незначительный приток газоконденсата дебитом 25,1 тыс. м³/сут на 19,8 мм диафрагме [7, 8, 9].

При исследовании пласта БУ₁₀¹⁻² в интервале 2991-2996 м (а.о. -2957,8-2962,8 м) скважины № 169 первоначально получен приток пластовой воды с газом. Для предотвращения выноса пластовой воды произведены РИР с последующей перфорацией пласта в интервале 2991-2995 м в результате чего получен приток нефтегазоконденсата со следами пластовой воды. Дебит газа сепарации составил 167,7 тыс. м³/сут, нефтеконденсата – 36,3 м³/сут на 12 мм штуцере, плотность нефтеконденсата изменяется от 0,754 до 0,812 г/см³. По заключению ГИС ГНК пласта в скважине отмечается на а.о. – 2953 м, а ВНК – на а.о. – 2963 м, следовательно, интервалом перфорации охвачена нефтенасыщенная часть пласта. При первой перфорации из-за непосредственной близости ВНК, произошел прорыв пластовой воды в скважину. В последующем, пластовую воду удалось изолировать, однако, из кровельной части пласта поступает значительное количество газоконденсата, несмотря на то, что по АКЦ в интервале 2980-2996 м отмечается жесткое сцепление цементного камня с колонной.

Притоки газоконденсата с пластовой водой получены при исследовании пласта БУ₁₀¹⁻² в скважинах №№ 154, 196. В скважине № 154 пласт испытан в интервале 2990-2997 м (а.о. -2944.7-2951.7 м), который по интерпретации ГИС является газонасыщенным, однако, при первой перфорации был получен незначительный приток пластовой воды и только после повторной перфорации в продукции скважины наряду с пластовой водой получен газоконденсат. Из-за большого содержания пластовой воды и низкой устьевой температуры исследование проводилось на одном режиме через шайбу 14 мм, дебит газа сепарации составил 136,5 тыс. м³/сут, конденсата – 12,2 м³/сут и пластовой воды – 4,5 м³/сут. Попыток изолировать приток пластовой воды при исследовании скважины не предпринималось. Заключение по качеству цементирования эксплуатационной колонны отсутствует, по ГИС в скважине пласт газонасыщен и нефтенасыщен, переток пластовой воды может быть из нижележащего водонасыщенного пласта БУ₁₀¹⁻².

При исследовании газонасыщенной по ГИС части пласта в скважине 196 в интервале 2982-2985 м (а.о. -2948,0-2951,0 м) получен непромышленный приток газоконденсата с пластовой водой. Дебит газа сепарации составил 12,2 тыс. m^3/cyt , конденсата – 0,6 m^3/cyt и пластовой воды – 16,3 м³/сут на 12,2 мм штуцере. Конденсат из пласта на поверхность практически не выносится, вследствие низких дебитов газоконденсатной смеси и большого содержания пластовой воды в продукции скважины. Попыток изолировать приток пластовой воды при исследовании скважины не предпринималось. Заключение по качеству цементирования эксплуатационной колонны отсутствует. Перетоки пластовой воды возможны из нижележащих пропластков пласта ${\rm БY}_{10}^{1-2}$. При исследовании пласта ${\rm БY}_{10}^{1-2}$ до проведения РИР также был получен приток газоконденсата с пластовой водой с содержанием ионов хлора в воде.

Пластовое давление пласта БУ₁₀¹⁻² принято 29,30 МПа. Результат замера пластового давления по скважинам 162, 165, 166 и 178 при расчете начального пластового давления для залежи не учитывался. Так в скважинах 162 и 178 КВД не вышла на радиальный приток и обработке не подлежит, в скважине 166 КВД не обрабатывалась из-за гидратообразования, а в скважине 165 замеренное пластовое давление значительно выше остальных замеров. Фильтрационные коэффициенты «а» и «b» приняты по данным обработки индикаторных диаграмм приведённых в актах. Средние значения коэффициентов по залежи составили: «а» - 2,3526 МПа²*сут/тыс. м³, «b» – 0,0174 (МПа*сут/тыс. м³)², удельной продуктивности – 0,1167 м³/сут/МПа²×м. При расчете средних значений не учитывались результаты интерпретации по скважине 212 из-за низких дебитов скважины и большого столба жидкости на забое скважины. По результатам обработки КВД в скважинах 156, 160, 165 и 169 рассчитаны параметры, средние значения которых по залежи составили: гидропроводность – 2,59 мкм²*м/мПа*с, проницаемость – 0,00973 мкм², пьезопроводность $-0,08 \text{ м}^2/\text{с}.$

В районе скважины № 170 – получен приток газоконденсата дебитом 52,4 тыс. м³/сут на 8 мм диафрагме при депрессии на пласт 16,85 МПа. Пластовое давление по залежи принято по графику 29,66 МПа, вследствие того, что КВД по скважине не обрабатывалось из-за гидратообразования. Фильтрационные коэффициенты «а» и «b» приняты по данным обработки индикаторной диаграммы, приведённые в акте испытания, которые составили 4,0337 МПа²*сут/тыс. м³ и 0,1747 (МПа*сут/тыс. м³)² соответственно. Удельная продуктивность залежи – 0,0495 м³/сут/МПа²×м. Вследствие того, что при ГДИ пласта БУ₁₀¹⁻² КВД не обрабатывались, следовательно, и параметры гидропроводности, проницаемости и пьезопроводности не рассчитывались.

Притоки газоконденсатной смеси при исследовании пласта БУ₁₂¹⁻¹ получены из скважин №№ 166 и 176, что согласуется с заключением ГИС. В скважине № 166 дебит газоконденсатной смеси составил 58 тыс. м³/сут на 12,1 мм диафрагме при депрессии на пласт 20,93 МПа. В скважине 176 дебит газа сепарации составил 45 тыс. м³/сут, стабильного кон-

денсата – 14,1 м³/сут на 12,3 мм штуцере. Следует отметить, что притоки газоконденсата, при исследовании пласта БУ₁₂¹⁻¹ являются незначительными, вследствие невысоких ФЕС пласта. Малодебитный фонтан газоконденсата дебитом 24,6 тыс. м³/сут на 12 мм диафрагме при депрессии 24,29 МПа со следами пластовой воды получен при исследовании пласта БУ₁₂¹⁻¹ в скважине 162 из интервала 3084-3090 м (а.о. -3054,3-3060,3 м). По интерпретации ГИС в интервале 3083,2-3087,4 метров (а.о. -3053,5-3057,7 м) пласт газонасыщен, 3087,4-3089,4 (а.о. -3057,7-3059,7 м) - газ с водой, 3090,4-3091,6 (а.о. -3060,7-3061,9 м) – с неясным насыщением и в интервале 3093,0-3100,6 (а.о. -3063,3-3070,9 м) - водонасыщен. Газоводяной контакт отбивается на а.о. -3058,0 м, следовательно, интервалом перфорации вскрыт ГВК залежи. Пластовое давление по залежи принято по графику 30,58 МПа, вследствие того, что КВД в скважинах не обрабатывалась изза гидратообразования. Фильтрационные коэффициенты «а» и «b» по залежи носят оценочный характер, так как индикаторные диаграммы являются некачественными из-за низких дебитов в залежи. Средние оценочные значения коэффициентов по залежи составили: «а» – 21,1432 МПа²*сут/тыс. м³, «b» – 0,1185 $(M\Pi a^* cyt/тыc.m^3)^2$, величина удельной продуктивности залежи не определялась из-за условности фильтрационных параметров. Вследствие того, что при ГДИ пласта БУ₁₂¹⁻¹ КВД не обрабатывались, следовательно, и параметры гидропроводности, проницаемости и пьезопроводности не рассчитывались.

В период геолого-разведочных работ на проводились промысловые месторождении исследования для изучения газоконденсатной характеристики методом одноступенчатого разделения фаз для определения параметров и показателей, являющихся исходными данными для подсчёта запасов газа и конденсата, а также для проектирования разработки месторождений углеводородного сырья. Так до начала опытно-промышленной эксплуатации залежи исследовался компонентный состав газоконденсатной смеси. Первоначально исследуются все разведочные и вышедшие из бурения скважины, позволяющие оценить характер изменения газоконденсатной характеристики пласта по площади и разрезу. На основании полученных данных судят о наличии пластовой воды и «подстилающей» нефтяной оторочки. В дальнейшем на стадии опытно-промышленной эксплуатации текущие исследования проводят для уточнения запасов углеводородов и пластовых

потерь конденсата в залежи. Полученные данные используются при обосновании режима сепарации с текущим составом газоконденсатной смеси. Результаты исследования скважин позволяют получить комплекс информации (газоконденсатная характеристика залежи), включающий в себя:

 изотермы сепарации пластового газа в интервале температур сепарации и давления сепарации;

– начальный компонентный состав газоконденсатной смеси в пластовых условиях до ввода в эксплуатацию месторождения;

 изотерму конденсации при пластовой температуре;

– физико-химические свойства газа и конденсата, отобранных сепарационных проб.

Газоконденсатная характеристика нужна в следующих случаях: для обоснования режима сепарации; при подготовке исходных данных для подсчета запасов конденсата и компонентов, которые представляют газоконденсатную смесь; при проектировании системы разработки и обустройства месторождений углеводородного сырья; для обоснования способа разработки месторождения на режиме истощения или с поддержанием пластового давления.

При проведении на месторождении геолого-промысловыхработ для изучения газоконденсатной характеристики выбирается одна наиболее высокопродуктивная скважина. В том случае, когда месторождение является многопластовым, тогда исследуется такое количество скважин, которое охватывает все залежи, содержащие основные запасы конденсата. Скважина, выбранная для проведения исследований, должна удовлетворять следующим требованиям:

 – она должна эксплуатироваться с минимально допустимым дебитом газа (скорость движения газа на башмаке фонтанных труб 4,0 м/с), обеспечивающим вынос с забоя и из ствола образовавшегося конденсата в исследовательскую аппаратуру;

 – для обеспечения постоянного дебита газа давление сепарации должно быть менее половины значения устьевого рабочего давления или равно ему;

 при депрессии на пласт, не превышающей 10%, подготовительный период работы скважины не должен превышать 2 суток;

 подготовительный период работы скважины считается завершенным, в случае, когда давление и температура потока флюида на устье постоянны и не изменяются содержание конденсата в пластовом газе и плотность конденсата при его периодических измерениях [10].

Необходимым условием выноса жидких высокомолекулярных фракций и пластовых примесей является достаточность скорости потока, которая может быть определена из выражения следующего вида:

$$20.052*10^{-3}*\frac{Q_M*Z*T}{r^{2*n}} \ge 4 \text{ m/c}$$
 (1.4)

где: Q_м – минимальный дебит газа, тыс.м³/сут; Z – коэффициент сверхсжимаемости газа; T – температура газа в рассматриваемом сечении; P – давление на этом сечении, МПа; D – диаметр сечения, м.

Если конструкция фонтанных (лифтовых) труб ступенчатая, то требуемая скорость потока должна быть ниже башмака в зоне притока пластового флюида, а также в сечении, где диаметр переходит от меньшего к большему значению. Геолого-промысловые исследования скважин на газоконденсатность осуществляют с использованием следующего оборудования: промысловый сепаратор при проведении разведки данного газоконденсатного месторождения; малогабаритной сепарационнойустановки типа «Конденсат – 2»; передвижная установка типа «Порта-Tecт».

Рассмотрим краткое описание указанного выше оборудования. Исследовательский сепаратор должен удовлетворять следующим требованиям:

 – работать на нагрузку, не превышающую 50% его паспортной производительности и обеспечивать полное отделение жидкой фазы от газа;

 – располагаться от устья скважины на расстояние не ближе 60 м;

 – его обвязка со скважиной производится без проведения сварочных работ;

 если температура и давление на устье скважины обеспечивают безгидратный режим в линии, соединяющей сепаратор со скважиной, то штуцер постоянного сечения устанавливается на устье, в противном случае – у входа в исследовательский сепаратор;

 предохранительная мембрана устанавливается на входе в сепаратор за штуцером и должна срабатывать при превышении рабочего давление более чем на 10%;

 отбор проб конденсата из сепаратора осуществляется с помощью замерных кранов, установленных на различных уровнях по вертикали в стенке сепаратора.

Исследования проводились по следующей схеме: добываемый пластовый флюид с устья скважины по соединительной линии через штуцер поступает в сепаратор, где происходит разделение фаз потока. Далее газ сепарации направляется на замерное устройство ДИКТи оттуда поступает на факел, либо в газопровод. Объем насыщенного конденсата может замеряться либо в отдельной ёмкости, соединенной через вентиль с сепаратором, либо непосредственно в самом сепараторе. Количество стабильного конденсата измеряется мерной линейкой, позволяющей отбивать уровень раздела конденсационной воды и газового конденсата. После продувки и закрытия задвижки, обеспечивающей сброс накопившегося конденсата, приоткрывается нижний кран (все остальные при этом закрыты). При появлении из крана брызг конденсата, он закрывается и включается секундомер. По известному объёму между ближайшими кранами, времени накопления конденсата, и количества прошедшего за этот период времени газа определяется конденсатогазовый фактор (см³/м³). Оборудование, применяемое при исследовании скважин методом установившихся отборов можно разделить на два типа:

1. Глубинные приборы и комплексы, предназначенные для замера параметров работы скважины непосредственно на забое и по стволу скважины.

2. Устьевое исследовательское оборудование. Перечислим наиболее часто применяемое устьевое оборудование: шайбный измеритель расхода газа; диафрагменный измеритель критического течения газа; дифманометры – расходомеры (поплавковые, мембранные, сильфонные), (УСФ-100); установки для исследо-«Надым-1», ваний скважин «Надым-2»; устройство «Режим ПНА-1»; низкотемпературные сепарационные установки (передвижные), наиболее часто применяемые при исследовании газаконденсатных и газонефтяных скважин (трапы); средства КИПиА: образцовые манометры, ртутные термометры, датчики давления и температуры частотного и аналогового типа с регистрирующей аппаратурой, акустические датчики механических примесей и т. д.

Шайбный измеритель расхода газа для измерения (до 5 тыс. м³/сут). Данный прибор применяется для замера дебита газа в трубном и затрубном пространстве нефтяных скважин эксплуатируемых глубинно-насосным способом. Представляет собой упрощенный ДИКТ и дифференциальный жидкостной U-образный манометр, подсоединяемый в корпусе ДИКТа на расстоянии 3-5 см от шайбы. Суточный дебит газа рассчитывается по формуле:

 $Q = 0.172 d_{\rm III}^{2} (h/g_{\rm r})^{0.5} (293/T_{\rm r})^{0.5}, (1.5)$

где: d_{m} – диаметр шайбы, мм; g_{r} – относительный удельный вес газа; h –перепад давления в мм; T_{r} – температура газа, K.

Диафрагменный измеритель критического течения газа (ДИКТ).

Используются ДИКТ-100, ДИКТ-50 при исследовании скважин с выпуском газа в атмосферу. При измерении дебита с помощью ДИКТа должно быть обеспечено условие критического течения газа через диафрагму т.е. давление до диафрагмы должно быть в два и более раз выше, чем после нее. Дебит газа определяется по формуле:

 $Q = C*P_{A}*D/(g_{r}*z*T_{A})^{0.5}$, (1.6) где: Q – дебит газа, тыс.м³/сут; C – коэффициент, определяемый по таблице и зависящий от диаметра диафрагмы; Р_л – абсолютное давление перед диафрагмой, кгс/см²; D – поправочный коэффициент для учета изменения показателя адиабаты реального газа; g_г – относительная плотность газа по воздуху; Т_д- абсолютная температура газа перед диафрагмой, ⁰К; z – коэффициент сверхсжимаемости.

Дифманометры-расходомеры состоят из двух основных узлов: 1) устройство, в котором монтируется диафрагма, сопло, штуцер (иное калиброванное отверстие); 2) дифференциального манометра, с помощью которого измеряется перепад давления на диафрагме.

Дебит газа рассчитывается по формуле:

 $Q = 1700^{*}a^{*}e^{*}k_{t}^{*}k_{1}^{*}d_{u}^{2}(P_{1}^{*}h/g_{r}^{*}T^{*}z)^{0.5},(1.7)$ где: Q – дебит, м³/сут;а – коэффициент расхода газа, определяемый в зависимости от отношения d_ш/D; D - диаметр трубопровода; е - поправочный коэффициент на расширение струи газа, определяемый по графикам в инструкции; k_t - коэффициент, зависящий от материала и температуры; k₁ - суммарная поправка на недостаточную остроту входной кромки диафрагмы и шероховатость трубопровода, определяется по табл. инструкции; d_ш-диаметр диафрагмы; Р₁- абсолютное давление перед диафраг-мой, кгс/см²;h - перепад давления дои после диафрагмы в мм рт. ст.; g_г – относительная плотность газа по воздуху; Т – абсолютная температура газа перед диафрагмой, К; Z - коэффициент сверхсжимаемости газа при Р и Т.

На каждом режиме проводимого исследования производится отбор проб механических примесей и жидкости в мерные сосуды и контейнеры (ёмкости). Пробы направляются в химико-аналитическую лабораторию для проведения гранулометрического и гидрогеохимического анализа. После каждого режима производится визуальный осмотр фильтр-пакета, повреждённые фильтры заменяются новыми [11].

Недостатком этих установок является то, что они должны подвергаться гидравлическому испытанию (дизельным топливом) каждые 200 часов непрерывной работы. При сборке на скважине установки проверяются опрессовкой давлением Рст. После окончания исследования разборку установки производят в обратном по-

рядке. Контейнеры демонтируются только после полного стравливания давления газа [12].

Геолого-промысловыми исследованиями ачимовских отложений Уренгойского месторождения занимались такие компании, как: МНП «Геодата», «Schlumberger», «ИЦГазИнформПласт», «ТюменНИИгипрогаз», «TheExproGroup». Каждая сервисная компания при проведении газоконденсатных исследований использовала персональное оборудование и методы отбора проб газа и конденсата. Компания «Schlumberger» для изучения газоконденсатной характеристики ачимовских отложения использовался многофазный расходомер PhaseTesterVx. Это передвижная замерная установка с небольшим весом, осуществляющая замер дебитов многофазного потока без разделения фаз. Главным элементом многофазного расходомера является секция трубки Вентури с гамма-измерителем фракций. Элементы узла измерительной секции установки герметично изолированы от скважинных флюидов. Принцип работы расходомера заключается в измерении массового дебита газожидкостной смеси и фазового соотношения газа, конденсата и воды в рабочих условиях, которые в дальнейшем преобразуются в объемные значения дебитов и, с применением PVT модели, приводятся к стандартным условиям. Для отбора проб углеводородов из потока сотрудниками компании «Schlumberger» разработано устройство PhaseSampler. Установка Phase Sampler состоит из нескольких основных элементов: три пробоотброных зонда для захвата предпочтительной фазы из многофазного потока; пробоотборная камера, с возможностью оптического контроля (рефрактометрии) характера отобранного флюида, а также позволяющая удалять ненужную в данный момент фазу из системы.

Отбор проб каждого флюида производится последовательно из многофазной системы при условии, что система находится в термодинамическом равновесии. Проба газа отбирается преимущественно из трубки, направленной по ходу потока. Пробы жидкости преимущественно отбираются трубками, направленными против хода потока. Независимо от направления трубок в пробоотборную камеру попадают все фазы, находящиеся в потоке. В пробоотборной камере при линейных давлении и температуре происходит сегрегация флюидов. При помощи оптического анализа и поршня из системы удаляются все фазы, за исключением отбираемой. При необходимости процедураотбора и удаления лишних флюидов итерационно повторяется. По результатам отбора проб и при наличии замеров дебитов газа и конденсата в линейных условиях, можно провести рекомбинацию добываемого флюида. Получить композиционный состав и фазовые диаграммы флюида. Отбор проб газа сепарации и конденсата осуществляется в соответствии с инструкцией. Промысловые исследования выполнены с замерами устьевых параметров и дебитов фаз на эксплуатационном режиме для изменения продуктивности, обводненности и содержания конденсата в продукции, а также выполнен отбор устьевых проб газа, конденсата для проведения PVT-исследований [13, 14].

Геолого-промысловые исследования газоконденсатной характеристики проводились специалистами ООО «МНП Геодата» с помощью передвижного комплекса для замера дебита газовых, нефтяных и газоконденсатных скважин (ПКДС). Он представляет собой блочно-модульную конструкцию для проведения полнопоточных газоконденсатных исследований скважин без выпуска газа в атмосферу (сжигания на факеле). Применяется на стадиях освоения, разработки и эксплуатации газовых и газоконденсатных месторождений с целью подсчета запасов газа, нефти и конденсата, а также определения оптимальных эксплуатационных характеристик объекта. Сепаратор комплекса предназначен для разделения входного потока на газовый и жидкостной, а также (при работе в статическом режиме) для отстоя жидких несмешивающихся сред. Трубопроводная обвязка и арматура обеспечивает подключение комплекса к исследуемой скважине и газосборному коллектору, а также управление потоками. Система контроля и управления комплекса обеспечивает выполнение следующих основных функций: измерять давление и температуру входящего потока; измерять дебит газового и жидкостного потока, после сепарации; давление и температуру газового и жидкостного потока после сепарации; уровень жидкости в сепараторе; уровень ингибитора гидратообразования в баке дозировочного блока; плотность газового и жидкостного потока при рабочих условиях; обводненность жидкостного потока поточным влагомером, границу раздела фаз конденсат-вода.

Непосредственное управление исполнительными механизмами выполняет программируемый логический контроллер ПЛК Micro850 производства фирмы Allen-Bradley. Максимальная производительность сепаратора вычисляется по формуле:

Q=8,64 · 10⁴ · W ·
$$\varphi$$
 · S · $\frac{p}{p_0}$ · $\frac{T_0}{T}$ · $\frac{z_0}{z}$
(1.8)

где: W – допустимая скорость потока газа, м/с W = Б · $\left[\frac{\sigma_{\kappa}(\rho_{\kappa} - \rho_{\tau})}{\rho_{\tau}^{2}}\right]^{0,25}$ (1.9)

где: Б, φ - справочные коэффициенты; S – площадь сечения сепаратора (насадки), - 0,95 м², σ_{κ} – поверхностное натяжение на границе раздела фаз (расчетная), дин/см; ρ_{r} , ρ_{κ} , - плотность газа и конденсата при рабочих условиях, кг/м³; P, – абсолютное давление сепарации, кг/см²; P₀ – абсолютное атмосферное давление, кг/см²; T, – абсолютная температура сепарации, К; T₀ – абсолютная нормальная температура, К; z, – коэффициент сжимаемости газа при рабочих условиях; z₀ – коэффициент сжимаемости газа при нормальных условиях.

Значения σ , ρ_r , z_0/z_1 , получены расчетным путем с использованием программы Aspen Hysys. Плотность конденсата принята 650 кг/м³. Температура сепарации – минус 10°С.

Газ ачимовской толщи Самбургского ЛУ характеризуется высоким начальным содержанием конденсата, достигающим значений 300-400 г/м³ и более. Достоверность определения содержания конденсата в газе, его физикохимических свойств, влияет на величину начальных и извлекаемых запасов конденсата. По состоянию на 01.01.2017 г. в пределах Самбургского лицензионного на пластах A_{3} , A_{4} , A_{5}^{1} , A_{5}^{2-3} и A_{6}^{0-2} выполнено 107 промысловых газоконденсатных исследований скважин. Распределение ГКИ в процессе освоения ачимовской толщи ЛУ приведено на рисунке 1.

Основной объем промысловых исследований на месторождении проведен ООО «МНП «Геодата» через сепаратор и ПКДС и ООО «Сиам Мастер» через сепаратор.

Рис. 1. Распределение газоконденсатных исследований скважин.

Результаты газоконденсатных исследований скважин показали значительное изменение дебитов газа и конденсата, обусловленное конструкцией забоя скважин, скважинного и сепарационного оборудования. Основные критерии оценки кондиционности газоконденсатных исследований установлены инструкцией - ОАО ГАЗПРОМ «Инструкция по комплексным исследованиям газовых и газоконденсатных скважин», Москва 2011 г. – скорость не менее 2,5 м/сек, пластовая депрессия не более 15-20%. Влияние каждого из данных условий на содержание конденсата в пластовом газе показано на рис. 3 и 4.

Рис. 2. Распределение объема исследований по исполнителям работ.

		Пла		wa #/		
	350 0	10 20	30 40	50 6	0 70	80
	360 -					
CHUMAN	370 -	•				•
đ	380 -			•		
	390 -	-	Кондицио df	нная обла ><20 %	сть,	
	400 -	Плас	ты Ач₃, Ач₄, Ач₅	2-3		
		5</th <th>371,9</th> <th></th> <th></th> <th></th>	371,9			
		<70	374,3			
		<60	375,8			
		<50	377,1			
		<40	373.1			
		<20	375 /			
		< 10	3/1,8			
		ur, %	Среднии ПС	5+B, I/M		
		4D 04	п	-1.3		

Рис. 3. Влияние пластовой депрессии на величину потенциала С_{5+В} при исследовании через ГС и ПКДС.

Толща характеризуется низкими коллекторскими свойствами. Для их улучшения на скважинах проводился многостадийный ГРП. Использование ГРП позволило получить больше кондиционных газоконденсатных исследований, отвечающих требованиям «Инструкции ...».

Распределение результатов газоконденсатных исследований в скважинах с учетом требований «Инструкции ...» приведено на рис. 5.

Рис. 5. Распределение исследований в скважинах с ГРП и без ГРП.

Потенциальное содержание конденсата в кондиционной области варьирует от 283,3 (пласт A_{4_3}) до 430,1 (пласты A_{4_4} , $A_{4_5}^{2-3}$) г/м³. Учитывая, что в основном исследовано нескольких пластов одновременно, отнесение результатов к конкретной залежи затруднено. Отмечается более высокое содержание тяжелых углеводородов в кондиционных составах газа пластов A_{4_3} , A_{4_4} , $A_{4_5}^{2-3}$ из скважин с ГРП, что связано с изменениями свойств коллектора [11].

При газоконденсатных исследованиях ачимовской толщи помимо промысловых сепараторов использовался ПКДС. Использование данного комплекса, обладающего высокой пропускной способностью позволяет получить кондиционные скорости потока при относительно меньшей пластовой депрессии, не требуется остановки скважины, не сжигается газ в атмосферу.

На рисунке 6 приведено сопоставление результатов исследования ачимовской толщи Самбургского ЛУ через сепаратор и ПКДС. В кондиционную область попадает около 20 % исследований, из них половина – с применением ПКДС. Их основная масса относится к нескольким пластам и обусловлена технологией разработки ачимовской толщи.

Рис. 6. Результаты исследования пластов Ач₃, Ач₄, Ач₅²⁻³ Самбургского лицензионного участка через сепаратор и ПКДС.

Несмотря на отмеченные достоинства ПКДС имеются недостатки, характерные для

устройств высокой пропускной способности многофазного расходомера «PhaseTester Vx*», комплекса ПКИОС, которые также были использованы для газоконденсатных исследований на Самбургском лицензионном участке. Критерием полноты разделения газоконденсатной смеси на газ и конденсат является содержание компонентов С5+В в газе сепарации. Чем меньше конденсата в газе сепарации, тем более достоверно, при прочих равных условиях, определен промысловый КГФ, а в дальнейшем - состав пластового газа и потенциальное содержание в нем конденсата. В табл. 1 приведеносопоставление составов газа сепарации, отобранных с различных устройств.

Промысловый сепаратор лучше других устройств отделяет конденсат от газа, концентрация С_{5+В} не превышает 0,46% мольных или 12 г/м³. Содержание конденсата в газе сепарации после других устройств достигает 1,00-1,65 % мольных, что составляет 35-40 г/м³. Использование второй ступени сепарации после комплекса ПКИОС при исследовании на скважине Р-62 Самбургского лицензионного участка позволило дополнительно извлечь 72 мл/м³ насышенного конденсата. Отмеченное показывает, что в данных устройствах промысловый КГФ, используемый при расчете состава пластового газа, занижен. На рисунке 7 приведено сопоставление содержания конденсата в газе сепарации после сепаратора (исследования выполнены ООО «МНП «ГЕОДАТА» и ООО «Сиам Мастер») и ПКДС (ООО «МНП «ГЕО-ДАТА»).

Таблица 1

		Компон	ентный состав	газа сепараци	и, % моль		
CH4	С2Н6	С3Н8	iC4H10	nC4H10	C5+B	CO2	N2
			Пласты Ач	и ₃ , Ач ₄ , Ач ₅ ²⁻³			
		Скважина	U1703, исслед	ование через га	азосепаратор		
84,64	7,61	2,98	0,61	0,65	0,46	0,82	0,20
		Скважина U	1703, исследов	ание через «Pl	naseTesterVx*>	>	
85,73	7,53	3,16	0,70	0,80	1,08	0,82	0,17
		Скважи	ина U1703, исс	ледование чер	ез ПКДС		
85,67	7,50	2,64	0,62	0,72	1,65	0,63	0,57
			Плас	т Ач ₅ ²⁻³			
		Скваж	хина 62, исслед	цование через	ПКИОС		
85.06	7,43	3,27	0,66	0,85	1,00	0,58	0,16

Составы газов сепарации из скважин U1703 и 62 Самбургского лицензионного участка

Рис. 7. Сопоставление содержания конденсата в газе сепарации после ГС и ПКДС.

Столь существенные различия обусловлены условиями сепарации, в первую очередь – температуры. Влияние дебита скважины на температуру сепарации показано на рис. 8.

Рис. 8. Влияние дебита газа сепарации на температуру в ПКДС.

Влияние температуры сепарации на содержание конденсата в газе сепарации после ПКДС приведено на рис. 9.

Рис. 9. Влияние температуры сепарации на содержаниеконденсата в газе сепарации (исследования через ПКДС).

Таким образом, значения потенциала C_{5+B} , входящие в кондиционную область , относятся

к нескольким пластам ачимовской толщи и расположены в диапазоне числящихся на балансе запасов РФ значений (рис. 10).

Рис. 10. Распределение кондиционных значений потенциала С_{5+В}, полученных в процессе ГКИ ачимовской толщи Самбургского ЛУ.

В процессе опытно-промышленной эксплуатации газо-гидродинамические исследования (ГГДИ) скважин на Самбургском месторождении велись многопрофильным научным предприятием ООО МНП «ГЕОДАТА» и ЗАО «ТРИИЦ». Были изучены фильтрационноемкостные характеристики коллекторов газоконденсатнонефтяных залежей пластов БУ10¹⁻², ${\rm Б}{\rm Y}_{12}^{1-2}$, ${\rm F}{\rm Y}_{13}^{-1}$, ${\rm F}{\rm Y}_{14}^{-1}$, ${\rm F}{\rm Y}_{17}^{-1-1}$. В контуре залежей продуктивные пласты охарактеризованы исследованиями 11 скважин. Скважина № 154 введена в эксплуатацию 09.02.2002 г. Интервал исследования 3209-3219 м (БУ₁₄⁻¹). По результатам гидродинамических исследований, проведенных 04.04.2005 г., получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: а – 2,67 МПа² *сут/тыс. м³, b – 0,0019 (МПа *сут/тыс. м³)², на глубине 3160 м расчетное пластовое давление составило 27,69 МПа, коэффициент гидропроводности - 3,04 мкм²*м/мПа*с. КВД недовосстановлено (недостаточно времени на исследование), поэтому полученные результаты недостоверны. По результатам газодинамических и газоконденсатных исследований дебит газа сепарации составил 121,7 тыс. м³/сут, дебит стабильного конденсата – 44,8 м³/сут, дебит газоконденсатной смеси – 155,98 м³/сут на 10 MM штуцере. По результатам газогидродинамических исследований, проведенных 23.09.2007 г. получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: а – 2,863 МПа² *сут/тыс. м³, b - 0,0019 (МПа *сут/тыс. м³)², на глубине 3150 м замеренное пластовое давление составило 26,73 МПа, а уточненное по методу Хорнера – 28,88 МПа, коэффициент гидропроводности – 2,21 мкм²*м/мПа*с, скин-фактор Sф = 2,25; дебит газа сепарации − 110,8 тыс. м³/сут, дебит стабильного конденсата – 49,81 м³/сут, дебит воды – 2,2 м³/сут, дебит газоконденсатной смеси – от 140,28 м³/сут на 10 мм штуцере.

Скважина № 159 введена в эксплуатацию 22.12.2002 г. При расконсервации скважины в 2002 г. принято решение на совместную эксплуатацию пластов ${\rm Б}{\rm Y}_{10}^{1-2}$, ${\rm F}{\rm Y}_{12}^{1-2}$, ${\rm F}{\rm Y}_{13}^{1}$. На скважине газо-гидродинамические исследования проводились в 2003 г., 2005 г., 2007 г. Интервал исследования 2973-2986,5 м (БУ₁₀¹⁻²); 3087-3100 м (БУ₁₂¹⁻²); 3143-3150,5 м (БУ₁₃¹). По результатам исследования методом КВД 17.12.2003 г. получили рассчитанные значения коэффициентов фильтрационных сопротивлений: $a - 0,0984 \text{ MII}a^2 \text{ *сут/тыс. } \text{м}^3, b - 0,0010$ (МПа *сут/тыс. м³)², на глубине 2900 м пластовое давление составило 27,72 МПа, а определенное по методу Хорнера 29,37 МПа, коэффициент гидропроводности 9,79 мкм²*м/мПа*с. По результатам исследований дебит газоконденсатной смеси составил 370,5 тыс. м³/сут, дебит газа сепарации – 361,6 тыс. м³/сут, дебит стабильного конденсата – 37 м³/сут, дебит пластовой воды - 3,0 м³/сут на 14 мм штуцере. По результатам газо-гидродинамических исследований, проведенных 21.07.2005 г. получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: а – 1,16 $M\Pi a^2 * cyt/тыс. m^3, b - 0 (M\Pi a * cyt/тыс. m^3)^2, на$ глубине 2960 м расчетное пластовое давление составило 28,21 МПа, коэффициент гидропроводности – 4,05 мкм² *м/мПа*с, дебит газоконденсатной смеси - 347,6 тыс. м³/сут, дебит газа сепарации - 427,6 тыс. м³/сут, дебит стабильного конденсата – 56,4 м³/сут, дебит пластовой воды - 0,94 м³/сут на 14 мм штуцере. По результатам газо-гидродинамических исследований, проведенных 10.07.2007 г. получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: а – 0,0989 МПа² *сут/тыс. м³, b – 0,0035 (МПа *сут/тыс. $(m^3)^2$, на глубине 2950 м замеренное пластовое давление составило 27,2 МПа, а уточненное по методу Хорнера 29,35 МПа, коэффициент гидропроводности – 3,54 мкм²*м/мПа*с, скинфактор - 2,09; дебит газоконденсатной смеси – 290,9 тыс. м³/сут, дебит газа сепарации – 387,1 тыс. м³/сут, дебит стабильного конденсата – 38,93м³/сут, дебит пластовой воды – 2,28 м³/сут, на 14 мм штуцере.

Таким образом, анализируя результаты исследований по скважине № 159 за период 2003-2007 гг. рассчитанные значения коэффициентов фильтрационных сопротивлений: а - практически не изменился и составил 0,0989 МПа²*сут/тыс. м³, b – увеличился на 0,025 (МПа *сут/тыс. м³)² и составил 0,0035 (МПа $*сут/тыс. м^{3})^{2}$, коэффициент пьезопроводности уменьшился на 0,07 м²/с с 0,11 до 0,04 м²/с, проницаемость уменьшилась на 0,011 мкм²с 0,0172 до 0,0062 мкм², коэффициент гидропроводности уменьшился с 9,79 до 3.54 мкм²*м/мПа*с. Пластовое давление в процессе эксплуатации скважины уменьшилось на 0,52 МПа с 27,72 МПа до 27,2 МПа, дебит газа сепарации увеличился с 361,6 до 387,1 тыс. м³/сут при 14 мм штуцере.

Скважина № 165 введена в эксплуатацию 22.12.2002 г. На скважине газо-гидродинамические исследования проводились в 2003 г. и 2007 г. Интервал исследования 2964-2982,5 м .Раньше пласт БУ₁₀¹⁻² рассматривался как единый объект разработки. По новой интерпретации материалов ГИС идет разбивка пласта БУ₁₀¹⁻² 2964-2970,8 м и 2972,8-2982,4 м. При исследовании скважины методом КВД в 2003 г. были получены следующие результаты: расчетное пластовое давление на глубине 2935 м составило 29,35 МПа, коэффициент гидропроводности – 6,2 мкм²*м/мПа*с. Рассчитаны значения коэффициентов фильтрационных сопротивлений: a – 1,0617 МПа²*сут/тыс. м³, b – 0,0006 (МПа *сут/тыс. м³)². По результатам газодинамических и газоконденсатных исследований дебит газоконденсатной смеси составил 277,59 тыс. м³/сут, дебит газа сепарации – 293,4 тыс.м³/сут, дебит стабильного конденсата - 19,1 м³/сут на 11,5 мм штуцере. При повторном исследовании скважины методом КВД в 2007 г. были получены следующие результаты: замеренное пластовое давление на глубине 2900 м составило 27,92 МПа, а уточненное по методу Хорнера - 29,34 МПа, коэффициент гидропроводности – 1,71 мкм²*м/мПа*с. Рассчитаны значения коэффициентов фильтрационных сопротивлений: $a - 0,664 \text{ M}\Pi a^2 * \text{сут/тыс}.$ м³, b – 0,0036 (МПа *сут/тыс. м³)². По результатам газодинамических и газоконденсатных исследований дебит газоконденсатной смеси -205,97 тыс. м³/сут, дебит газа сепарации - 204,2

тыс.м³/сут, дебит стабильного конденсата – 20,4 м³/сут, дебит пластовой воды – 5,2 м³/сут на 12 мм штуцере. Так, анализируя результаты исследований по скважине 165 за период 2003-2007 гг. рассчитанные значения коэффициентов фильтрационных сопротивлений: а – уменьшился на 0,3977 МПа²*сут/тыс. м³ и составил 0,664 МПа² *сут/тыс. м³, b – увеличился на 0,0030 (МПа *сут/тыс. м³)² и составил 0,0036 (МПа *сут/тыс. м³)². Пластовое давление в процессе эксплуатации скважины уменьшилось на 1,58 МПа с 29,5 МПа до 27,92 МПа.

Скважина№ 168 введена в эксплуатацию 12.02.2001 г. Интервал исследования 3187-3197 м (БУ₁₄⁻¹). По результатам газо-гидродинамических исследований, проведенных 31.03.2005 г. получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: a - 1,0 МП a^2 *сут/тыс. m^3 , b - 0,002(МПа *сут/тыс. м³)², на глубине 3192 м расчетное пластовое давление составило 29,87 МПа, коэффициент гидропроводности – 3,79 мкм²*м/мПа*с, дебит газа сепарации – 213,1 тыс. м³/сут, дебит стабильного конденсата -55,8 м³/сут, дебит воды – 0,6 м³/сут, дебит газоконденсатной смеси – 207,6 тыс. м³/сут на 12 MM штуцере. По результатам газогидродинамических исследований, проведенных 05.12.2007 г. получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: a – 0,826 МПа² *сут/тыс. м³, b – 0,0033 (МПа *сут/тыс. м³)², на глубине 3180 м замеренное пластовое давление составило 26,96 МПа, а уточненное по методу Хорнера – 28,17 МПа, коэффициент гидропроводности – 3,83 мкм²*м/мПа*с, скин-фактор $S\phi = 2,11;$ дебит газа сепарации – 278,6 тыс. м³/сут, дебит стабильного конденсата - 78,04 м³/сут, дебит воды – 3,5 м³/сут, дебит газоконденсатной смеси – 277,37 тыс. м³/сут на 16 мм штуцере. Так, анализируя результаты исследования по скважине 168 за период 2005-2007 гг. рассчитанные значения коэффициентов фильтрационных сопротивлений: а - уменьшился с 1,0 до 0,826 МПа²*сут/тыс. м³, b – увеличился с 0,002 до 0,0033 (МПа *сут/тыс. м³)², расчетное пластовое давление в процессе эксплуатации скважины уменьшилось на 1,7 МПа с 29,87 МПа до 28,17 МПа, дебит газа сепарации увеличился с 248,8 до 278,6 тыс. м³/сут, дебит стабильного конденсата увеличился с 64,8 м³/сут до 78,04 м³/сут, дебит воды увеличился с 0,9 до 3,5 м³/сут.

На скважине № 170 исследования проводились 10.05.2002 г. Интервал исследования 3224-3230 м (БУ₁₄¹). По результатам исследований получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: а – 1,299 МПа² *сут/тыс. м³/тыс. м³, b – 0 (МПа *сут/тыс. м³)², на глубине 3100 м пластовое давление, уточненное по методу Хорнера составило 30,3 МПа, коэффициент гидропроводности – 6,38 мкм²*м/мПа*с, дебит газа сепарации – 114,6 тыс. м³/сут, дебит стабильного конденсата - 42,86 м³/сут, дебит пластовой воды - 1,6 м³/сут, дебит газоконденсатной смеси - 157,99 тыс. м³/сут. Скважина находится в консервации.

Скважина № 177 работает на пласт БУ₁₀¹⁻² (2954,8-2958) м, (2958,8-2972) метров и пласт $БУ_{13}^{-1}$ (3124-3135 м). На скважине проводились газо-гидродинамические исследования в 2002 г., 2004 г., 2007 г. По результатам исследования методом КВД 16.12.2002 г. получили рассчитанные значения коэффициентов фильтрационных сопротивлений: a – 1.078 МПа²*сут/тыс. м³, b – 0,009 (МПа *сут/тыс. $(m^{3})^{2}$, расчетное пластовое давление на глубине 2900 м составило 31,3 МПа, коэффициент гидропроводности - 4,49 мкм²*м/мПа*с. По результатам газодинамических и газоконденсатных исследований дебит газоконденсатной смеси составил 379,54 тыс. м³/сут, дебит газа сепарации – 375,3 тыс. м³/сут, дебит стабильного конденсата – 43,4 м³/сут на 14 мм штуцере. По результатам исследований методом КВД, проведенных 06.06.2004 г., получили рассчитанные значения коэффициентов фильтрационных сопротивлений: a – 1,4487 МПа² *сут/тыс. м³., b – 0,0001 (МПа *сут/тыс. м³)², расчетное пластовое давление на глубине 2900 м составило 28,7 МПа, коэффициент гидропроводности – 2,52 мкм²*м/мПа*с. Так как КВД не восстановилась (недостаточное время исследования), полученные результаты недостоверны. По результатам газодинамических и газоконденсатных исследований дебит газоконденсатной смеси составил 316,56 тыс. м³/сут, дебит газа сепарации – 310,5 тыс. м³/сут, дебит стабильного конденсата – 23,1 м³/сут на 14 мм штуцере. По результатам исследований методом КВД, проведенных 30.08.2004 г., получили рассчитанные значения коэффициентов фильтрационных сопротивлений: a – 1,556 MПа² *сут/тыс. м³., b – 0,0001 (МПа *сут/тыс. м³)², расчетное пластовое давление на глубине 2900 м составило 28,6 МПа, коэффициент гидропроводности – 2,78 мкм²*м/мПа*с. Так как КВД не восстановилась (недостаточное время исследования), полученные результаты недостоверны. По результатам газодинамических и газоконденсатных исследований дебит газоконденсатной смеси составил 314,12 тыс. м³/сут, дебит газа сепарации – 413,4 тыс. м³/сут, дебит стабильного конденсата - 23,1 м³/сут, дебит воды - 5,6 м³/сут на 14 мм штуцере. 06.04.2005 г. на скважине проводились газодинамические и газоконденсатные исследования, в результате которых дебит газоконденсатной смеси составил 333,96 тыс. м³/сут, дебит газа сепарации – 331,8 тыс. м³/сут, дебит стабильного конденсата - 30 м³/сут дебит пластовой воды – 3,5 м³/сут на 14 мм штуцере. 23.07.2007 г. на скважине проводились газо-гидродинамические исследования методом КВД получили рассчитанные значения коэффициентов фильтрационных сопротивлений: a – 1,12 МПа² *сут/тыс. м³., b – 0,0004 (МПа *сут/тыс. м³)², замеренное пластовое давление на глубине 2900 м составило 27,2 МПа, а уточненное по методу Хорнера – 29,4 МПа, коэффициент гидропроводности - 2,57 мкм²*м/мПа*с, скин-фактор S ϕ = 2,05. По результатам газодинамических и газоконденсатных исследований дебит газоконденсатной смеси составил 275,79 тыс. м³/сут, дебит газа сепарации – 291,2 тыс. м³/сут, дебит стабильного конденсата – 34,03 м³/сут дебит пластовой воды – 2,8 м³/сут на 14 мм штуцере. Так, анализируя результаты исследований по скважине 177 за период 2002-2007 гг. рассчитанные значения коэффициентов фильтрационных сопротивлений: а – увеличился на 0,042 МПа²*сут/тыс. м³ и составил 1,12 МПа² *сут/тыс. м³, b – уменьшился на 0,0005 (МПа *сут/тыс. M^3)² и составил 0,0004 (МПа *сут/тыс. $м^3$)², коэффициент гидропроводности уменьшился с 4,49 до 2,57 мкм²*м/мПа*с. Пластовое давление в процессе эксплуатации скважины уменьшилось на 4,1 МПа с 31,3 МПа до 27,2 МПа.

В опытно-промышленной эксплуатации находится скважина 207. Интервал исследования 3210-3227 м (БУ₁₄⁻¹). Введена в эксплуатацию 09.02.2002 г. Газо-гидродинамические исследования на скважине проводились в 2003 г., 2004 г, 2007 г. По результатам исследований, проведенных 14.07.2003 г. получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: а - 6,118 МПа² *сут/тыс. м³, b – 1,5214 (МПа *сут/тыс. $(M^3)^2$, на глубине 3170 м пластовое давление, уточненное по Хорнеру составило 30,6 МПа, коэффициент гидропроводности 1.03 _ мкм²*м/мПа*с , дебит газа сепарации - 94,3 тыс. м³/сут, дебит стабильного конденсата – 23,9 м³/сут, дебит пластовой воды -1,6 м³/сут, дебит газоконденсатной смеси - от 94,42 тыс. м³/сут. при 12 мм штуцере. 22.06.2004 г. были проведены повторные газо-гидродинамические исследования, в результате которых получили: а – 4,2306 МПа² *сут/тыс. м³, b – 0,0022 (МПа $*сут/тыс. м^{3})^{2}$, на глубине 3126 м пластовое давление, уточненное по Хорнеру составило 26,06 МПа, коэффициент гидропроводности -1,1 мкм²*м/мПа*с, дебит газа сепарации – 82,9 тыс. м³/сут, дебит стабильного конденсата – 23,7 м³/сут, дебит газоконденсатной смеси – 87,47 тыс. м³/сут при 12 мм штуцере, абсолютно-свободный дебит – 140,19 тыс. м³/сут. 16.09.2007 г. были проведены газо-гидродинамические исследования, в результате которых получили: a – 10,3805 МПа² *сут/тыс. м³, b = 0,0648 (МПа *сут/тыс. м³)², на глубине 3150 м замеренное пластовое давление составило 24,8 МПа, а уточненное по Хорнеру – 27,1 МПа коэффициент гидропроводности _ 0.99 мкм²*м/мПа*с, скин-фактор Sф=2,09; дебит газа сепарации – 68,6 тыс. м³/сут, дебит стабильного конденсата – 18,2 м³/сут, дебит воды - 1,9 м³/сут, дебит газоконденсатной смеси -95,6 тыс. м³/сут при 12 мм штуцере. Так, анализируя результаты исследования по скважине 207 за период 2003-2007 гг. рассчитанные значения коэффициентов фильтрационных сопротивлений: а – увеличился с 6,118 до 10,3805 $M\Pi a^2 * cyt/тыс. m^3, b - уменьшился с 1,5214 до$ - 0,0648 (МПа *сут/тыс. м³)², коэффициент пьезопроводности уменьшился на 0,20 м²/с с 0,22 до 0,02 м²/с, проницаемость уменьшилась на 0,0288 мкм² 0,032 до 0,0032 мкм², коэффициент гидропроводности уменьшился с 1,03 до 0,99 мкм²*м/мПа*с. Пластовое давление в процессе эксплуатации скважины уменьшилось на 3,5 МПа с 30,6 МПа до 27,1 МПа, дебит газа сепарации уменьшился с 94,3 м³/сут до 68,6 тыс. м³/сут.

Скважина №214 введена в эксплуатацию 15.01.2000 г. интервалы исследования 3150-3156 м (БУ₁₃⁻¹) и 3203-3210 м; 3210-3220 м (БУ₁₄⁻¹). Газо-гидродинамические исследования на скважине проводились в 2003 г., 2004 г., 2006 г. и 2007 г. По результатам исследований, проведенных 04.11.2003 г., получили следующее: на глубине 3150 м расчетное пластовое давление составило 29,8 МПа, коэффициент гидропроводности - 29,99 мкм²*м/мПа*с, коэффициент продуктивности – 5,6 м³/сут*МПа, газовый фактор – 1642,56 м³/м³, дебит нефти – 79,12 м³/сут, дебит газа сепарации – 140,8 тыс. м³/сут, дебит пластовой воды – 6,6 м³/сут. По результатам газо-гидродинамических исследований, проведенных 19.11.2004 г., на глубине 3160 м расчетное пластовое давление по методу Хорнера составило 28,3 МПа, коэффициент

гидропроводности – 14,37 мкм²*м/мПа*с, коэффициент продуктивности – 6,3 м³/сут*МПа, дебит нефти - 55,45 м³/сут, дебит газа сепарации - 126,1 тыс. м³/сут. По последней КВД, записанной во время гидропрослушивания, которое проводилось всего три месяца назад, то есть в сентябре, расчетное пластовое давление составило 27.7 МПа. Разница в полученных величинах расчетных пластовых давлений, с разницей во времени - три месяца, возможно связана не столько с падением давления в залежи, а с тем, что во время гидропрослушивания запись КВД осуществлялась, во-первых, в течение 16 суток, а во-вторых, близлежащие скважины были остановлены. В данном же случае близлежащие скважины продолжали работать и КВД записывалась только в течение 1,5 суток. По результатам исследований, проведенных 15.09.2006 г. на глубине 3150 м пластовое давление составило 30,4 МПа, коэффициент гидропроводности по газу - 1580 мкм²*м/мПа*с, коэффициент гидропроводности по нефти – 2,57 мкм²*м/мПа*с, коэффициент продуктивности – 0,975 м³/сут*МПа, газовый фактор – 248 м³/м³, дебит нефти – 10,12 м³/сут, дебит конденсата – 31,7 м³/сут, дебит воды – 4,66 м³/сут. Последние газо-гидродинамические исследования провели 08.11.2007 г., в результате которых получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: a – 0,0483 МПа² *сут/тыс. м³, b – 0,0185 (МПа *сут/тыс. м³)², на глубине 3140 м замеренное пластовое давление составило 26,7 МПа, а уточненное по методу Хорнера – 27,9 МПа, коэффициент гидропроводности – 8,62 Д*м/сП, скин-фактор Sф=2,84; дебит газа сепарации – 145,3 тыс. м³/сут, дебит нефти отсутствует, дебит стабильного конденсата – 42,04 м³/сут, дебит воды – 2,5 м³/сут, дебит газоконденсатной смеси - от 119,55 до 157,17 тыс. м³/сут при 8-12 мм штуцере. Так, анализируя результаты исследования по скважине 214 за период 2003-2006 гг. коэффициент гидропроводности по нефти уменьшился на мкм²*м/мПа*сс 29.99 21.37 ЛО 8.62 мкм²*м/мПа*с дебит нефти уменьшился с 79,12 до 10,12 м³/сут. Пластовое давление в процессе эксплуатации скважины уменьшилось на 3,1 МПа с 29,8 МПа до 26,7 МПа. До 2006 г. скважина работала в нефтяном режиме. На момент исследования в ноябре 2007 г. продукция скважины: дебит нефти отсутствует, отмечается дебит конденсата - 42,04 м³/сут.

Скважина№ 215 введена в эксплуатацию 18.09.2001 г. Интервал исследования 3189-3206 м (БУ₁₄¹). По результатам газо-динамических и

газоконденсатных исследований, проведенных 07.11.2001 г. получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: a – 2,316 МПа² *сут/тыс. м³, b – 0 (МПа *сут/тыс. м³)², на глубине 3150 м пластовое давление составило 31,1 МПа, коэффициент гидропроводности – 8,98 мкм²*м/мПа*с, дебит газа сепарации – 185,93 тыс. м³/сут, дебит стабильного конденсата - 84 м³/сут, дебит пластовой воды – 2,8 м³/сут, дебит газоконденсатной смеси $-206,26 \text{ м}^3$ /сут на 12 мм штуцере. По результатам газо-гидродинамических исследований, проведенных 26.11.2007 г., получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: а – 0,6567 МПа² *сут/тыс. м³, b – 0,0007 (МПа *сут/тыс. м³)², на глубине 3140 м замеренное пластовое давление составило 26,1 МПа, а уточненное по методу Хорнера - 27,2 МПа, гидропроводности – коэффициент 5.53 мкм²*м/мПа*с, скин-фактор S ϕ = 2,18; дебит газа сепарации – 292,3 тыс. м³/сут, дебит стабильного конденсата – 99,56 м³/сут, дебит воды - 2,1 м³/сут, дебит газоконденсатной смеси -316,2 тыс. м³/сут при штуцере 17,5 мм. Так, анализируя результаты исследования по скважине 215 за период 2001-2007 гг. рассчитанные значения коэффициентов фильтрационных сопротивлений: а – уменьшился с 2,316 до 0,6567 МПа²*сут/тыс. м³, b – увеличился и составил – 0,0007 (МПа *сут/тыс. м³)², пластовое давление в процессе эксплуатации скважины уменьшилось на 5,0 МПа с 31,1МПа до 26,1 МПа. Дебит газа сепарации увеличился с 185,93 до 292,3 тыс. м³/сут.

На скважине № 218 в интервале 3392-3398 м (БУ₁₇¹⁻¹) проводились газодинамические исследования, в результате которых получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: а -2,1569 $\hat{M}\Pi a^2$ *сут/тыс. м³, b – 0,0206 (МПа *сут/тыс. м³)², дебит газа сепарации – 180,25 тыс. м³/сут, дебит стабильного конденсата – 56,01 м³/сут, дебит пластовой воды -1,6 м³/сут, дебит газоконденсатной смеси - 204,9 тыс. м³/сут. 19.03.2005 г. были проведены газогидродинамические исследования, в результате которых получили следующее: рассчитанные значения коэффициентов фильтрационных сопротивлений: a – 6,0 МПа² *сут/тыс. м³, b – 0,009 (МПа *сут/тыс. м³)²,на глубине 3395 м расчетное пластовое давление составило 29,97 МПа, коэффициент гидропроводности – 1,62 мкм²*м/мПа*с, дебит газа сепарации – 105,9 тыс. м³/сут, дебит стабильного конденсата – 20,5 м³/сут, дебит газоконденсатной смеси

104,96 – 115,36 тыс. м³/сут при 10-14 мм штуцере. Скважина находится в консервации.

Скважина № 253 введена в эксплуатацию 20.04.2000 г. Интервал исследования 3200-3214 м (БУ₁₄¹). Газо-гидродинамические исследования на скважине проводились в 2003 г., 2004 г., 2006 г. и 2007 г. По результатам исследований, проведенных 18.11.2003 г., получили следующее: на глубине 3060 м пластовое давление составило 27.8 МПа, коэффициент гидропроводности – 71,71 мкм²*м/мПа*с (обработка без учета притока), коэффициент гидропроводности – 67,05 мкм²*м/мПа*с (обработка с учетом притока) коэффициент продуктивности - 7,5 $m^{3}/cyt*M\Pi a$, дебит нефти – 105,4 m^{3}/cyt , дебит газа сепарации – 136,4 тыс. м³/сут, дебит пластовой воды – 2,86 м³/сут. Газовый фактор – 1261,01м³/м³. По результатам газо-гидродинамических исследований, проведенных 27.11.2004 г., на глубине 3150 м расчетное пластовое давление по методу Хорнера составило 27,6 МПа, коэффициент гидропроводности -51,35 мкм²*м/мПа*с (обработка без учета притока), коэффициент гидропроводности – 40,61 мкм²*м/мПа*с (обработка с учетом притока) коэффициент продуктивности 6.6 м³/сут*МПа, дебит нефти – 90,54 м³/сут, дебит газа сепарации – 124,5 тыс. м³/сут, дебит пластовой воды – 4 м³/сут. Газовый фактор – 1316,87 м³/м³. Повторные исследования были проведены 21.04.2006 г. В результате исследований получили следующее: пластовое давление на глубине 3170 м составило 29,5 МПа, коэффициент гидропроводности по газу - 24,53 мкм²*м/мПа*с, коэффициент гидропроводности по нефти – 30 мкм²*м/мПа*с, коэффициент продуктивности – 3,03 м³/сут*МПа, дебит нефти – 28,96 м³/сут, дебит конденсата – 23,4 м³/сут, дебит пластовой воды – 5,0 м³/сут. Газовый фактор – 360 м³/м³. По результатам исследований, проведенных 21.09.2006 г., пластовое давление на глубине 3165 м составило 29,5 МПа, коэффициент гидропроводности по газу – 3706,3 мкм²*м/мПа*с, коэффициент гидропроводности по нефти – 5,65 мкм²*м/мПа*с, коэффициент продуктивности _ 0,55 $m^{3}/сут*МПа, дебит нефти - 23,11 m^{3}/сут, дебит$ конденсата 29,4 м³/сут, дебит пластовой воды – 6,7 м³/сут. Газовый фактор – 360 м³/м³. По результатам исследований, проведенных в апреле 2007 г., пластовое давление на глубине 3180 м составило 27,13 МПа, коэффициент гидропроводности по газу – 30,6 мкм²*м/мПа*с, коэффициент гидропроводности по нефти - 21,9 мкм²*м/мПа*с, коэффициент продуктивности по нефти - 3,4 м³/сут*МПа, дебит нефти – 43,18 м³/сут, дебит конденсата – 17 м³/сут, дебит пластовой воды – 1,1 м³/сут. По результатам исследований, проведенных 15.11.2007 г., рассчитанные значения коэффициентов фильтрасопротивлений: ционных a – 2,2669 МПа²*сут/тыс. м³, b – 0,0128 (МПа *сут/тыс. $(m^3)^2$, замеренное пластовое давление на глубине 3150 м составило 26,3 МПа, а уточненное по методу Хорнера – 26,6 МПа, коэффициент гидропроводности – 2,5 мкм²*м/мПа*с, скинфактор Sф=2,26; дебит газа сепарации – 105,3 тыс. м³/сут, дебит нефти отсутствует, дебит стабильного конденсата – 58,26 м³/сут, дебит пластовой воды – 3,5 м³/сут. Так, анализируя результаты исследования по скважине 253 за период 2003 по апрель 2007 гг. дебит нефти уменьшился на 62,22 м³/сут с 105,4 до 43,18 м³/сут. Дебит стабильного конденсата в апреле 2006 г. составил 23,4 м³/сут. Пластовое давление в процессе эксплуатации скважины уменьшилось на 3,2 МПа с 29,5 МПа до 26,3 МПа. На момент исследования в 2007 г. продукция скважины: дебит нефти отсутствует, отмечается дебит конденсата – 58,26 м³/сут. Далее приведены результаты исследований добывающего фонда скважин, работающего по различным эксплуатационным объектам Самбургского месторождения.

Пласт БУ₁₀¹⁻² охарактеризован исследованиями следующих скважин: 159, 165 и 177. Начальное пластовое давление пласта БУ₁₀¹⁻² принято 29,24 МПа. В процессе эксплуатации пластовое давление уменьшилось на 0,17 МПа и среднее значение пластового давления по результатам исследования составило 29,07 МПа. По результатам обработки КВД рассчитаны параметры, средние значения которых по залежи составили: коэффициент гидропроводности 3,38 мкм²*м/мПа*с, коэффициент пористости 0,146 д.е., проницаемости 0,0213 мкм², пьезопроводности 0,19 м²/с, удельной продуктивности 2,51 м³/сут/МПа²×м. Начальное пластовое давление пласта БУ₁₂¹⁻² принято по графику и составило 30,59 МПа. В процессе эксплуатации пластовое давление уменьшилось на 2,3 МПа и среднее значение пластового давления по результатам исследования составило 28,29 МПа. По результатам обработки КВД рассчитаны параметры, средние значения которых по залежи составили: коэффициент гилропроводности 4,77 мкм²*м/мПа*с, проницаемости 0,0175 мкм², пьезопроводности 0,16 м²/с, удельной продуктивности 9,26 м³/сут/МПа²×м.

Пласт БУ₁₃¹ охарактеризован исследованиями трех скважин: №№159, 177 и 214. Начальное пластовое давление пласта БУ₁₃¹ принято 30,90 МПа. В процессе эксплуатации пластовое давление уменьшилось на 2,47 МПа и среднее значение пластового давления по результатам исследования составило 28,43 МПа. По результатам обработки КВД рассчитаны параметры, средние значения которых по залежи составили: коэффициент гидропроводности 5.71 мкм²*м/мПа*с, проницаемости 0,0245 мкм², пьезопроводности 0,19 м²/с, удельной продуктивности 9,98 м³/сут/МПа²×м. Начальное пластовое давление пласта БУ₁₄¹принято 32,17 МПа. В процессе эксплуатации пластовое давление уменьшилось на 4,54 МПа и среднее значение пластового давления пласта БУ₁₄⁻¹ составило 27,63 МПа. По результатам обработки КВД рассчитаны параметры, средние значения которых по залежи составили: коэффициент гидропроводности 2,39 мкм²*м/мПа*с, проницаемости 0,0198 мкм², пьезопроводности 0,16 M^2/c , удельной продуктивности 0,54 $м^3/сут/МПа^2 \times м.$

Пласт БУ₁₄¹ охарактеризован исследованиями следующих скважин: №№154, 168, 214, 215 и 253. Начальное пластовое давление пласта БУ₁₄¹ принято 31,99 МПа. Среднее значение пластового давления по результатам исследования составило 27,95 МПа, то есть в процессе эксплуатации пластовое давление уменьшилось на 4,04 МПа. По результатам обработки КВД рассчитаны параметры, средние значения которых по залежи составили: коэфгидропроводности фициент _ 4.83 мкм²*м/мПа*с,проницаемости – 0,0129 мкм², пьезопроводности – 0,10 м²/с,удельной продуктивности – 2,33 м³/сут/МП a^2 ×м.

Начальное пластовое давление пласта-БУ₁₇¹⁻¹ принято 33,76 МПа. В процессе эксплуатации пластовое давление уменьшилось на 3,79 МПа и среднее значение пластового давления по результатам исследования составило 29,97 МПа. По результатам обработки КВД рассчитаны параметры, средние значения которых по залежи составили: коэффициент гидропроводности – 1,62 мкм²*м/мПа*с, проницаемости – 0,0075 мкм², пьезопроводности – 0,06 м²/с, удельной продуктивности – 1,72 м³/сут/МПа²×м. Согласно РД 153-39.0-109-01 для оценки фильтрационных свойств пласта, оценки изменения ФЕС в призабойной зоне гидродинамические исследования скважин должны проводиться с периодичностью от 0,5-1 года на скважину и охват эксплуатационного фонда скважин исследованиями должен быть от 50-100%. Анализируя предоставленный материал по ГДИ по Самбургскому месторождению количество исследований скважин, выполненных в процессе их эксплуатации, недостаточно. Поэтому, с целью контроля за разработкой Самбургского месторождения, рекомендуется увеличить количество ГДИ скважин [16, 17].

Состав пластового газа рассчитывался в лаборатории на основе результатов исследования проб углеводородов, отобранных в процессе промысловых газоконденсатных исследований, выполненных на скважинах Самбургского лицензионного участка при геологоразведочных работах (1978-2002 годы) и опытнопромышленной эксплуатации. В процессе геологоразведочных работ проведено 43 газоконденсатных исследования на 32 скважинах, в процессе опытно - промышленной эксплуатации - 69 исследований на 14 скважинах. В период геологоразведочных работ отобрано и исследовано 17 полных комплектов проб углеводородов и 62 полных комплектов – в период опытно-промышленной разработки. Дебит газа сепарации в процессе разведочных работ изменялся от 12,2 (скважина 196, пласт БУ₁₀¹⁻²) до 334,9 (скважина 154, пласт БУ₁₄¹) тыс. м³/сут, конденсатогазовый фактор варьировал от 26 (скважина 196, пласт БУ₁₀¹⁻²) до 630 (скважина 176, пласт БУ₁₂¹⁻¹).По результатам лабораторного анализа проб газов (сепарации, дегазации и дебутанизации) и дебутанизированного конденсата, методами хроматографии, рассчитаны составы пластового газа и потенциальное содержание в нем компонентов. Начальный состав пластового газа, определенный в период геологоразведочных работ на Самбургском лицензионном участке, является в основном метановым (91,50-79,74% мольных). Его содержание снижается с увеличением глубины залежи. Концентрация головных углеводородов (этана, бутана, пропанов) в сумме варьирует от 6,44 до 12,23% мольных. Мольное содержание компонентов С5+в изменяется в газе от 1,47 до 7,5% (максимальное содержание отмечается в пластах БУ₁₄¹. Концентрация неуглеводородных компонентов (углекислого газа и азота) в сумме изменяется от 0,51 (пласт ${\rm БY}_{10}^{-1}$ -

²) до 3,47 (пласт БУ₁₄¹). Относительная (по воздуху) плотность пластового газа зависит от содержания в нем тяжелых углеводородов и варьирует от 0,6452 (БУ₁₀¹⁻²) до 0,8692 (БУ₁₄¹).Состав пластового газа, определенный в процессе опытно-промышленной эксплуатации, также метановый, концентрация которого, для большей части проб, со временем увеличивается (относительно начального содержания). Содержание компонентов С_{5+в}в пластовом газе снизилось в процессе разработки залежей за рассматриваемый период до 30% (пласты БУ₁₀¹⁻² и БУ₁₇¹⁻²) [18, 19].

Потенциальное содержание пентанов и вышекипящих в газе пластов Самбургского лицензионного участка для периода геологоразведочных работ, рассчитанное в лаборатории, изменяется от 66,3 (пласт ${\rm БY}_{10}^{1-2}$) до 315,31 (пласт ${\rm БY}_{14}^{-1}$) г/м³ пластового газа. Определенное в процессе опытнопромышленной эксплуатации потенциальное содержание конденсата варьирует от 49,95 (пласт БУ₁₀¹⁻²) до 310,45 (БУ₁₄¹) и имеет тенденцию к снижению по отношению к начальным определениям, при наличии нескольких исследований в течение 4-6 лет добычи газоконденсатной смеси.

Потенциальное содержание конденсата, состав пластового газа и коэффициенты извлечения конденсата для пластов БУ101-2 - БУ122-1 приняты по результатам кондиционных промысловых и лабораторных газоконденсатных исследований, для пластов БУ₁₃¹-БУ₁₇¹⁻¹ - по результатам промысловых исследований и расчетом по графоаналитическим зависимостям, полученным для месторождений Западной Сибири. По пласту БУ₁₀¹⁻² потенциальное содержание конденсата принято средним по данным скважин №№ 160 (2967-2977 м) и 165 (2972-2980 м). По пластам БУ₁₂¹⁻¹, БУ₁₂¹⁻² и БУ₁₂²⁻¹ потенциальное содержание конденсата принято по скважине № 165 (3089-3098 м). По пластам БУ₁₃¹–БУ₁₄² потенциальное содержание конденсата в пластовом газе принято по результатам графоаналитического метода, учитывающего групповой углеводородный состав конденсата и термобарические условия залежи. По пластам БУ₁₆⁰-БУ₁₇¹⁻¹ потенциальное содержание конденсата принято по выходу стабильной углеводородной фазы из скважины № 193 (3334-3340, 3347-3352 м), с учетом остаточной концентрации компонентов С5+В в газе сепарации. КИК рассчитывались по результатам лабораторных термодинамических исследований потерь насыщенного конденсата в ячейке -PVT высокого давления, при снижении пластового давления до атмосферного. По пробам, отобранным в процессе геологоразведочных работ, коэффициент извлечения конденсата изменяется от 0,392 (пласт БУ₁₄⁻¹) до 0,875 (пласт БУ₁₀¹⁻²), определенный в процессе опытно-промышленной эксплуатации – от 0,42 (пласты БУ₁₃⁻¹, БУ₁₄⁻¹) до 0,91 (пласт БУ₁₀¹⁻²) [15, 16]. Для подсчета извлекаемых запасов кон-денсата пластов БУ_{10}^{1-2} - БУ_{12}^{2-1} коэффициенты извлечения конденсата приняты по данным лабораторных исследований кондиционных проб из скважин № 160 (2967-2977 м), 165 (2972-2980 м) и 165 (3089-3098 м). Для пластов БУ₁₃¹-БУ₁₇¹⁻¹ КИК рассчитан по аналитической зависимости для месторождений Западной Сибири, учитывающей потенциальное содержание конденсата. Состав пластового газа принят исходя из хроматографии кондиционных проб и потенциального содержания в нем компонентов [20, 21].

Таким образом, результаты комплексных исследований скважин на газоконденсатную характеристику являются базовыми для обоснования и составления технологического режима эксплуатации скважин, проектирования разработки, уточнения коэффициента извлечения конденсата и планирования добычи углеводородов Ачимовских отложений Самбургского месторождения.

1. Применение ГРП на низкопроницаемых коллекторах ачимовской толщи Самбургского лицензионного участка позволяет увеличить продуктивность скважин и получить больше кондиционных результатов газоконденсатных исследований.

2. Использование сепарационных комплексов высокой пропускной способности приводит к занижению промыслового конденсатногазового фактора.

3. Для более достоверного определения содержания конденсата в пластовом газе, после комплекса ПКДС необходима установка второй ступени сепарации.

Литература: / References:

Алиев З.С., Бердин Т.Г., Ли Г.С. Опыт исследования скважин нижнемеловых залежей Самбургского месторождения. Обзорная информация: Разработка и эксплуатация газовых и газоконденсатных месторождений. М.: ИРЦ Газпром, 2002.
 43 с. [Aliev Z.S., Berdin T.G., Lee G.S. Experience in researching the Lower Cretaceous deposits of the Samburgskoye field. Overview: Development and operation of gas and gas condensate fields. M.: IRC Gazprom, 2002. 43 s.] (In Russ)

- Александрова Е.М, Иванова М.С., Инякина Е.И., Катанова Р.К, Томский К.О. Изучение характеристики нефти двухфазных залежей. Мат. Всероссийской молодежной научной конференции с участием иностранных ученых. Новосибирск, 2019. [Alexandrova E.M., Ivanova M.S., Inyakina E.I., Katanova R.K., Tomsky K.O. Studying the oil characteristics of two-phase deposits. Mat. of the All-Russian Youth Scientific Conference with the participation of foreign scientists. Novosibirsk, 2019.] (In Russ)
- 3. Р Газпром 086-2010. Инструкция по комплексным исследованиям газовых и газоконденсатных скважин: в 2 ч. / разраб. ООО «Газпром ВНИИГАЗ» (С.Н. Бузинов, Ю.Н. Васильев и др.); утв. ОАО «Газпром» 05.08.2010 г., введ. 29.04.2011 г. М.: Газпром ЭКСПО, 2011. Ч. 1, 234 с. Ч. 2, 319 с. [R Gazprom 086-2010. Instructions for comprehensive research of gas and gas condensate wells: at 2 hours / development. Gazprom VNIIGAZ LLC (S.N. Buzinov, Yu.N. Vasiliev, etc.); approved OAO Gazprom 05.08.2010, introduced. 04/29/2011. Moscow: Gazprom EXPO, 2011. Part 1, 234 p. Part 2, 319 p.] (In Russ)
- Иванова М.С., Инякина Е.И., Краснов И.И., Инякин В.В. Влияние горно-геологических условий на отработку запасов углеводородов. Горный журнал. 2019; 2: 10-12. [Ivanova M.S., Inyakina E.I., Krasnov I.I., Inyakin V.V. The influence of geological conditions on the development of hydrocarbon reserves. Mountain Journal. 2019; 2: 10-12.
- Инякина Е.И., Мамчистова Е.И. и др. Влияния неравномерности ввода залежей в разработку на величину конденсатоотдачи. *Научный форум. Сибирь.* 2015; 1: 47-48. [Inyakina E.I., Mamchistova E.I. et al. Influences of uneven input of deposits into development on the value of condensate recovery. *Scientific Forum. Siberia.* 2015; 1: 47-48.] (In Russ)
- 6. Катанова Р.К., Мараков Д.А. Влияние наличия жидкости в продукции скважин на показатели разработки газоконденсатных месторождений. *Мат. IX Всероссийской научнопрактической конференции.* М.: Изд-во «Перо», 2018: 186. [Katanova R.K., Marakov D.A. The influence of the presence of fluid in the production of wells on the development indicators of gas condensate fields. *Materials of the IX All-Russian Scientific and Practical Conference "Youth and Scientific and Technical Progress in the Modern World".* М.: Pero Publishing House, 2018: 186.] (In Russ)
- Краснов И.И., Михеева В.А., Матвеева М.В. Экспериментальные исследования фазового поведения многокомпонентных газоконденсатных систем. Известия ВУЗов. Нефть и газ. 2006; 2: 21-26. [Krasnov I.I., Mikheeva V.A., Matveeva M.V. Experimental studies of the phase behavior of multicomponent gas condensate systems. Izv. universities. Oil and gas. 2006; 2: 21-26.] (In Russ)
- Катанова Р.К., Инякина Е.И., Томский К.О. и др. Учет потерь давления по стволу скважины в условиях разработки месторождений Западной Якутии. *Научный форум. Сибирь.* 2019; 5 (1): 9-10. [Katanova R.K., Inyakina E.I., Tomsky K.O. et al. Accounting for pressure losses along a wellbore under conditions of development of deposits in Western Yakutia. *Scientific Forum. Siberia.* 2019; 5 (1): 9-10.] (In Russ)
- Инякина Е.И., Краснов И.И., Инякин В.В. Опыт разработки нефтегазоконденсатных месторождений с осложненной геолого-физической характеристикой. *Нефть и газ: опыт и инновации.* 2017; 1: 41-56. [Inyakina E.I., Krasnov II, Inyakin V.V. Experience in the development of oil and gas condensate fields with complicated geological and physical characteristics. *Oil and gas: experience and innovation.* 2017; 1: 41-56.] (In Russ)
- Краснов И.И. Технология выработки трудноизвлекаемых запасов нефти из сложнопостроенных нефтегазовых месторождений. *Нефть и газ.* 2003; 2: 46-50. [Krasnov I.I. The technology for producing hard-to-recover oil reserves from complex oil and gas fields. *Oil and gas.* 2003; 2: 46-50.] (In Russ)
- Томская В.Ф., Александрова Е.М. и др. Обоснование режимов и условий эксплуатации скважин на Среднеботуобинского месторождении. *Научный форум. Сибирь.* 2019; 5 (1): 11-12. [Tomskaya V.F., Alexandrova E.M. and other Justification of the modes and conditions of operation of wells in the Srednebotuobinskoye field. *Scientific forum. Siberia.* 2019; 5 (1): 11-12.] (In Russ)

- Инякина Е.И., Захарова М.Р., Катанова Р.К. и др. Исследование недонасыщенных по фазовому состоянию газоконденсатных залежей. *Научный форум. Сибирь.* 2019; 5 (1): 13-14. [Inyakina E.I., Zakharova M.R., Katanova R.K. et al. Investigation of gas condensate deposits that are unsaturated in phase state. *Scientific forum. Siberia.* 2019; 5 (1): 13-14.] (In Russ)
- Инякина Е.И., Томская В.Ф., Шавалеева А.А., Варламов В.В. Оценка эффективности разработки нефтегазовых залежей Среднеботуобинского месторождения. *Научный форум. Сибирь.* 2018; 4 (1): 26-27. [Inyakina E.I., Tomskaya V.F., Shavaleeva A.A., Varlamov V.V. Assessment of the effectiveness of the development of oil and gas deposits of the Srednebotuobinsky field. *Scientific forum. Siberia.* 2018; 4 (1): 26-27.] (In Russ)
- 14. Островская Т.Д., Инякина Е.И., Краснов И.И. Влияние воды на извлечение углеводородов из пласта при разработке газоконденсатного месторождения. Научный форум. Сибирь. 2018; 4 (2): 5-7. [Ostrovskaya T.D., Inyakina E.I., Krasnov I.I. The effect of water on the extraction of hydrocarbons from the reservoir during the development of a gas condensate field. Scientific forum. Siberia. 2018; 4 (2): 5-7.] (In Russ)
- 15. Краснов И.И., Островская Т.Д., Краснова Е.И. и др. Особенности прогнозирования конденсатоотдачи на оборудовании фирмы Chandler Engineering. Академический журнал Западной Сибири. 2012; 6: 64. [Krasnov I.I., Ostrovskaya T.D., Krasnova E.I. and others. Features of the prediction of condensate return on the equipment of the company Chandler Engineering. Academic Journal of Western Siberia. 2012; 6: 64.] (In Russ)
- 16. Краснов И.И., Томский И.С., Инякин В.В. Методы изучения фазовых процессов при разработке газонефтеконденсатных месторождений. Академический журнал Западной Сибири. 2014; 10 (6): 13-15. [Krasnov I.I., Tomsky I.S., Inyakin V.V. Methods for studying phase processes in the development of gas and oil condensate fields. Academic Journal of Western Siberia. 2014; 10 (6); 13-15.] (In Russ)
- Краснов И.И., Островская Т.Д., Матвеева М.В. Особенности выработки трудноизвлекаемых запасов углеводородов на месторождениях Крайнего. Севера. Академический журнал Западной Сибири. 2018; 14 (4): 57-59. [Krasnov I.I., Ostrovskaya T.D., Matveeva M.V. Features of the development of hard-torecover hydrocarbon reserves in the fields of Extreme. North. Academic Journal of Western Siberia. 2018; 14 (4): 57-59.] (In Russ)
- 18. Петрова Д.А., Катанова Р.К., Инякина Е.И., Иванова М.С. Оценка пластовых потерь углеводородов в условиях разработки нефтегазоконденсатных месторождений. *Мат. Всероссийской молодежной научной конференции с участием* иностранных ученых. Новосибирск, 2019: 265-268. [Petrova D.A., Katanova R.K., Inyakina E.I., Ivanova M.S. Assessment of reservoir losses of hydrocarbons in the development of oil and gas condensate fields. *Materials of the All-Russian Youth Scientific Conference with the participation of foreign scientists*. Novosibirsk, 2019: 265-268.] (In Russ)
- Инякина Е.И., Захарова М.Р., Катанова Р.К., Томская В.Ф., Александрова Е.М. Исследование недонасыщенных по фазовому состоянию газоконденсатных залежей. *Научный форум. Сибирь.* 2019; 5 (1): 13-14. [Inyakina E.I., Zakharova M.R., Katanova R.K., Tomskaya V.F., Alexandrova E.M. The study of phase-unsaturated gas condensate deposits. *Scientific forum. Siberia.* 2019; 5 (1): 13-14.] (In Russ)
- 20. Ставицкий В.А., Ли Г.С., Шигидин О.А. Продуктивность газоконденсатных скважин Ачимовских отложений Самбургского НГКМ. Геология, бурение, разработка и эксплуатация газовых и газоконденсатных месторождений: HTC. М.: Газпром экспо, 2012; 2: 20–25. [Stavitsky V.A., Lee G.S., Shigidin O.A. Productivity of gas condensate wells of the Achimov deposits of the Samburgskoye oil and gas condensate field. Geology, drilling, development and operation of gas and gas condensate fields: NTS. M.: Gazprom expo, 2012; 2: 20-25.] (In Russ)
- 21. Сафронов М.Ю., Ли Г.С., Стасенков И.В. Опыт строительства скважин в сложных горно-геологических условиях II участка Ачимовских отложений Самбургского НГКМ. Мат. научно-практических конференций молодых учёных и специалистов ОАО «Газпром» – призёров 2011 года. М.: ООО

«Газпром экспо», 2012: 5-10. [Safronov M.Yu., Lee G.S., Stasenkov I.V. Experience in the construction of wells in difficult geological conditions of the II section of the Achimov deposits of the Samburgskoye oil and gas condensate field.Materials of scientific and practical conferences of young scientists and specialists of JSC Gazprom - winners of 2011. M.: OOO Gazprom Expo, 2012: 5-10.] (In Russ)

RESEARCH OF PROPERTIES OF GAS-CONDENSATE FLUIDS UNDER CONDITIONS OF DEVELOPMENT OF SAMBURG DEPOSIT

D.A. Marakov, V.V. Inyakin, S.K. Gracheva, R.K. Katanova

Russian State University of Oil and Gas (National Research University) named after IM Gubkin, Moscow, Russia; com@gubkin.ru Tyumen Industrial University, Tyumen, Russia North-Eastern Federal University. M.K. Ammosova, Polytechnic Institute (branch) of Mirny, (Sakha) Yakutia; rose941101@mail.ru

Abstract:

The purpose of the study: assessment of literature, the study of the modern strategy for conducting a complex of well research, the study of filtration and reservoir characteristics of reservoirs of gas condensate deposits of the layers BU_{10}^{1-2} , BU_{12}^{1-1} , BU_{12}^{2-1} , BU_{12}^{2-1} , BU_{13}^{1-1} , BU_{14}^{1-1} , BU_{16}^{1-2} , BU_{16}^{1-2} , BU_{16}^{1-3} , BU_{17}^{1-1} . Materials: In the reservoir contour, productive formations were characterized by testing 55 wells, 187 objects of which gas condensate inflows were obtained in 55 objects and mixed gas condensate inflows with other fluids (oil, produced water) in 11. The studies were carried out both in the open hole during drilling and in the production casing. Testing during drilling with a set of test tools on pipes of the KII-146 and KII-95- type SevKavNII conducted in 7 objects (3 received gas condensate inflows). Results: Based on the results of the study in stationary modes, flow rates and bottomhole pressures were determined in various modes. Indicator diagrams were constructed, as well as transformed dependency graphs, from which the filtration resistance coefficients "a" and "b" were determined, and then the absolutely free flow rate of the gas condensate mixture, and the presence of liquid at the bottom wells. In facilities where in the near-well part of the well was a column of fluid. The flow rate of the gas condensate mixture was measured using DICT. Changing the diameter of the washer on the prover, a transition was made from one mode to another after pressure stabilization on the prover and wellhead. According to the results of the HPC processing by the tangent or Horner method, the formation hydraulic conductivity was calculated. Conclusions: The use of hydraulic fracturing in low-permeability reservoirs of the Achimov stratum of the Samburg licensed area allows increasing well productivity and obtaining more conditioned results of gas condensate studies. The use of high-capacity separation complexes leads to an underestimation of the field condensate-gas factor.

Key words: hydrodynamic studies of wells, reservoir properties of reservoirs, gas condensate reservoirs, stationary mode, well flow rates, bottomhole pressure, indicator charts

Вклад авторов:

Д.А. Мараков:	разработка дизайна исследования, написание текста рукописи, редактирование текста рукописи;
В.В. Инякин:	написание текста рукописи, редактирование текста рукописи;
С.К. Грачева:	написание текста рукописи, редактирование текста рукописи;
Р.К. Катанова:	написание текста рукописи, редактирование текста рукописи.
A 11 3 1	· · · · ·

Authors' contributions:

D.A. Marakov:	developing the research design, article writing, article editing;
V.V. Inyakin:	article writing, article editing;
S.K. Gracheva:	article writing, article editing;
R.K. Katanova:	article writing, article editing.

Финансирование: Исследование не имело финансовой поддержки. Financing: The study was performed without external funding.

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов. Conflict of interest: The authors declare no conflict of interest.

Статья поступила / Article received: 03.10.2019. Принята к публикации / Accepted for publication: 17.12.2019.

Для цитирования: Мараков Д.А., Инякин В.В., Грачева С.К., Катанова Р.К. Исследование свойств газоконденсатных флюидов в условиях разработки Самбургского месторождения. *Нефть и газ: опыт и инновации*. 2019; 3 (2): 42-62.

For citation: Marakov D.A., Inyakin V.V., Gracheva S.K., Katanova R.K. Research of properties of gas-condensate fluids under conditions of development of Samburg deposit. *Petroleum and gas: experience and innovation (Russia)*. 2019; 3 (2): 42-62. (In Russ)

УВАЖАЕМЫЕ КОЛЛЕГИ!

Редакция журнала «*Нефть и газ: опыт и инновации*» принимает к публикации научные материалы по различным аспектам разведки, добычи природных ресурсов, вопросам экономики, теории и практики и др.

Правила при направлении работ в редакцию:

1. Статья предоставляется в электронной версии и в распечатанном виде (1 экз.). Печатный вариант должен быть подписан всеми авторами.

2. Электронная версия обязательно размещается на сайте журнала. В связи с этим передача автором статьи для публикации в журнале *подразумевает его согласие* на размещение статьи и контактной информации на данном и других сайтах.

3. На титульной странице указываются: название статьи, полные ФИО, звание, учёная степень, место работы (полное официальное название учреждения и его адрес) и должность авторов, номер контактного телефона, адрес электронной почты.

4. Перед названием статьи указывается УДК.

5. Текст статьи должен быть набран шрифтом Times New Roman 14, через полуторный интервал, ширина полей – 2 см. Каждый абзац должен начинаться с красной строки, которая устанавливается в меню «Абзац». Не использовать для красной строки функции «Пробел» и Таb. Десятичные дроби следует писать через запятую. Объём статьи – до 18 страниц машинописного текста (для обзоров – до 30 страниц).

6. Оформление оригинальных статей должно включать: название, ФИО авторов, организация, резюме и ключевые слова (на русском и английском языках), введение, цель исследования, материалы и методы, результаты и обсуждение, выводы по пунктам или заключение, список цитированной литературы, вклад каждого автора (при коллективной работе) при подготовке и написании статьи, обзора; финансовые условия. Возможно авторское оформление статьи (согласуется с редакцией).

7. К статье прилагается развёрнутое резюме объёом до 400 слов, ключевые слова. В реферате даётся описание работы с выделением разделов: введение, цель, материалы и методы, результаты, выводы. Он должен содержать только существенные факты работы, в том числе основные цифровые показатели.

Каждая статья должна иметь профессиональный перевод на английском языке: Название статьи, ФИО авторов и их полной контактной информации, название учреждения, город, резюме и ключевые слова, название и подписи в рисунках и графах таблиц. Приветствуется полный профессиональный перевод статьи на английском языке.

Для каждого автора необходимо указать:

a) SPIN-код в e-library (формат: XXXX-XXXX),

б) Researcher ID (формат: X-XXXX-20XX),

в) ORCID iD (XXXX-XXXX-XXXX).

8. Помимо общепринятых сокращений единиц измерения, величин и терминов допускаются аббревиатуры словосочетаний, часто повторяющихся в тексте. Вводимые автором буквенные обозначения и аббревиатуры должны быть расшифрованы при их первом упоминании в тексте статьи (не используется в резюме). Не допускаются сокращения простых слов, даже если они часто повторяются.

9. Статистика. Данные исследований должны быть статитсически обработаны на базе компьютерной программы SPSS-Statistics и описаны в тексте.

10. Таблицы должны быть выполнены в программе Word, компактными, иметь поряд-ковый номер, название и чётко обозначенные графы. Расположение в тексте – по мере их упоминания.

11 Диаграммы оформляются в программе Excel. Должны иметь порядковый номер, название и чётко обозначенные категории. Расположение в тексте – по мере их упоминания.

12. Библиографические ссылки в тексте статьи даются цифрами в квадратных скобках в соответствии с пристатейным списком литературы, оформленным в соответствии с ГОС-

Том и расположенным в конце статьи. Все библиографические ссылки в тексте должны быть пронумерованы по мере их упоминания. Фамилии иностранных авторов приводятся в оригинальной транскрипции.

В списке литературы указываются:

а) для журнальных статей: Фамилия и Инициалы автора (-ов; не более трех). Название статьи. *Журнал.* Год; том (номер): страницы «от» и «до»;

б) для книг: Фамилия и Инициалы автора. Полное название. Город (где издана): Название издательства, год издания. Количество страниц;

 в) для диссертации – Фамилия и Инициалы автора. Полное название работы: Дисс.... канд. (или докт.) каких наук. Место издания, год. Количество страниц.

13. В тексте рекомендуется использовать международные названия лекарственных средств, которые пишутся с маленькой буквы. Торговые названия препаратов пишутся с большой буквы.

14. Рецензирование. Издание осуществляет рецензирование всех поступающих в редакцию материалов, соответствующих тематике жур-

нала, с целью их экспертной оценки. Все статьи подвергаются слепому рецензированию независимыми экспертами (срок: до двух месяцев). После получения заключения Редакция направляет авторам копии рецензий или мотивированный отказ. Текст рукописи не возвращается. Замечания рецензентов обязательны для исполнения при последующей доработке статьи.

Редакция оставляет за собой право научного редактирования, сокращения и литературной правки текста, а так же отклонения работы из-за несоответствия её профилю или требованиям журнала.

15. Редакция не принимает на себя ответственности за нарушение авторских и финансовых прав, произошедшие по вине авторов присланных материалов.

Статьи в редакцию направляются письмом по адресу: 625041, г. Тюмень, а/я 4600, редакция журнала «*Нефть и газ: опыт и инновации*» или по электронной почте на адрес редации: note72@yandex.ru